Schlussbericht, Dezember 2005

Erdwärmesonden für Direktheizung

Phase 1: Modellbildung und Simulation

ausgearbeitet durch Arthur Huber Huber Energietechnik AG Jupiterstrasse 26 CH – 8032 Zürich

Erdwärmesonden für Direktheizung	Geothermie	
Phase I: Modellbildung und Simulation		Bundesamtes

Zusammenfassung

Erdwärmesonden werden heute primär im geschlossenen Kreislauf als Wärmequellen für Wärmepumpen eingesetzt. Im Molassegebiet des Schweizerischen Mittellandes ist im ungestörten Erdreich in Tiefen von 400m mit Temperaturen von ca. 24-26 °C zu rechnen. Dies ist die minimale Temperatur, mit der heute ein gut wärmegedämmtes Gebäude mit Strukturheizung auf 20 °C beheizt werden kann (d.h. direkt, ohne eine Wärmepumpe). In einer ersten Etappe soll analytisch untersucht werden, wie eine geschlossene Erdwärmesonde aussehen muss, damit eine minimale Temperatur von 24-26°C aus einer Tiefe von ca. 600 m gefördert werden kann.

Zunächst wurden dazu die grundsätzlichen Unterschiede zwischen untiefen und tiefen Erdwärmesonden dargestellt und daraus abgeleitet Schlussfolgerungen für die notwendigen Rechenmodelle abgeleitet. Aus physikalischer Sicht liegt dabei die Abgrenzung nicht in der Bohrtiefe, sondern im Temperaturniveau, das genutzt werden soll. In der klassischen Erdwärmesonde liegt im Wärmeentzugsfall das Temperatur-Nutzungsniveau über die ganze Sondentiefe unter dem natürlichen Temperaturniveau des unbeeinflussten Erdreichs, bei den tiefen Erdwärmesonden findet nur im unteren Teil ein Wärmeentzug statt, im oberen Teil verliert die Sonde wieder einen Teil ihrer Wärme ans Erdreich. Entsprechend dieser Definition nutzt die tiefe Erdwärmesonde den geothermischen Wärmefluss aus dem Erdinnern, die untiefe Erdwärmesonde hingegen primär die von der Erdoberfläche im Jahreszeitenverlauf eindringende Wärme ins Erdreich. Aus dieser Erkenntnis heraus wurde die analytische "Erdwärmesondengleichung" hergeleitet und Regeln für die Anwendbarkeit der Modelle aufgestellt.

Die Umkehrung des Wärmeflusses in tiefen Erdwärmesonden erzwingt im Simulationsbereich auch den Einsatz eines Modells, bei dem das Erdreich in horizontale Erdschichten unterteilt werden kann. Dabei sollen die Stoffwerte der Sonde und Hinterfüllung in den einzelnen Schichten unterschiedlich berechnet werden können. Aus diesem Grund wurde das Simulationsprogramm EWS (Huber, Schuler, 1997) entsprechend angepasst.

Die Berechnungen zeigen, dass bei 600 m tiefen Erdwärmesonden (50mm Duplex) Quellentemperaturen von maximal 19°C erreicht werden können. Durch eine unterschiedliche Hinterfüllung im unteren und im oberen Teil der Sonde lässt sich die Quellentemperatur um maximal 2°C erhöhen. Diese Massnahme verringert den Wärmetransport vom unteren Teil des Erdreichs in die oberen Erdschichten und führt so im oberen Erdreich zu einem grösseren Temperaturgradienten zur Sonde hin. Durch eine höhere Sondenexzentrizität lässt sich die Quellentemperatur bis maximal 1 °C erhöhen. Mit Koaxialsonden in der gleichen Bohrung hingegen lassen sich bei Bohrtiefen von 600 m Quellentemperaturen von 25 – 26 °C erreichen. Im Gegensatz zur Doppel-U-Sonde ist die Koaxialsonde mit der notwendigen, guten thermischer Ankopplung ans Erdreich aber noch weiter weg von der technischen Realisierbarkeit.

Eine Wirtschaftlichkeitsbetrachtung zeigt, dass selbst bei idealen Bohrverhältnissen mit rund 45% Mehrkosten gegenüber konventionellen, untiefen Erdwärmesonden mit Wärmepumpe zu rechnen ist. Es ist denkbar, dass die künftige Bohrtechnik diese Mehrkosten wesentlich verringern wird. Eine Warmwasserproduktion ohne Wärmepumpe wird mit dieser Technik aber nicht realisierbar. Trotzdem wird der Trend zu tieferen Bohrungen sicher anhalten, da damit höhere Quellentemperaturen und damit wesentlich bessere Wirkungsgrade bei Wärmepumpen ermöglicht werden. In diesem Sinne sollen die Anstrengungen zu dieser Arbeit verstanden werden.

Diese Arbeit ist im Auftrag des Bundesamtes für Energie entstanden. Für den Inhalt und die Schlussfolgerungen ist ausschliesslich der Autor dieses Berichtes verantwortlich.

Abstract

So far, vertical borehole heat exchangers are mainly applied in closed loops as heat sources for heat pumps. In a depth of 400 m in the Swiss Molasse Basin, the undisturbed ground temperature is expected to be some 24 to 26 °C. This is the minimal temperature level required for heating a good insulated building equipped with a structure heating system (directly, without a heat pump). In a first step, the goal is to examine analytically how a closed vertical borehole heat exchanger has to be engineered to deliver heating temperatures of 24 to 26 °C out of a depth of 600 m.

In the analytical part of this report, the main differences between deep and shallow boreholes are displayed. Conclusions for the required mathematical models are derived. It is showed that not the borehole depth but the applied temperature level is the prominent difference between deep and shallow boreholes. Using a classical borehole heat exchanger for heating, the applied temperature level is lower than the temperature level of the undisturbed ground. On the other hand, in deep boreholes the heat extraction only takes place in the lower part, in the upper part, the borehole heat exchanger looses heat into the ground. Accordant to this definition, a deep vertical borehole is using the geothermic heat flow out of the earth's core while shallow boreholes use heat that entered into the ground during summer time from the surface. Out of this cognition, the analytically "vertical borehole equation" was derived and rules for the model's applicability were made.

The reversal of the heat flow in the upper part of deep boreholes enforces the application of models which allow the simulation of different horizontal layers in the ground. In addition, the model has to calculate the material values of the borehole and of the backfilling material differently. In this account, the simulation software EWS (Huber, Schuler, 1997) was adapted accordingly.

The results of the computations show that 600 m deep boreholes (50 mm duplex) can deliver maximum temperatures of 19 °C. By using different backfilling materials in the upper and the lower part of the borehole, the source temperature can be raised by 2 °C. This method reduces the heat flow from the lower to the upper part of the ground and causes a larger temperature gradient in the upper part towards the borehole. By choosing a vertical borehole with higher eccentricity, the source temperature can be raised by some 1 °C. Using coaxial boreholes of 600 m depth, source temperatures of 25 to 26 °C can be achieved. In contrast to the double U-pipe, the coaxial borehole with its necessarily good thermal connection to the ground is farther away from the technical feasibility.

Résumé

Présent des sondes géothermiques sont utilisées surtout dans le cycle fermé comme sources de chaleur pour des pompes à chaleur. Dans le bassin molassique suisse, on s'attend à des températures d'environ 24-26°C dans des profondeurs de 400 m. C'est la température minimale, avec laquelle un bâtiment avec une bonne isolation thermique et un chauffage structurel peut être chauffé à 20°C (c.-à-d. directement, sans une pompe à chaleur).

Dans une première étape, on examine analytiquement, comme une sonde géothermique fermée doit paraître, afin qu'une température minimale de 24-26°C d'une profondeur d'environ 600 m puisse être tirée.

D'abord, les différences fondamentales entre sondes géothermiques peu profondes et profondes sont représentées et des conclusions pour les modèles nécessaires sont dérivées. Du point de vue physique, la délimitation y ne se trouve pas dans la profondeur du forage, mais dans le niveau de température qui est utilisé.

Conformément à cette définition, la sonde géothermique profonde utilise toutefois d'abord le fleuve de chaleur géothermique de l'intérieur de la terre. Par contre, la sonde géothermique peu profonde utilise la chaleur pénétrant de la surface terrestre. L'équation de la sonde géothermique analytique est déduite de cette constatation et on établis des règles pour l'applicabilité des modèles.

Le renversement du fleuve de chaleur dans les sondes géothermiques profondes impose aussi l'application d'un modèle dans le secteur de simulation, avec lequel le sol peut être subdivisé en couches de terre horizontales. Les valeurs de matière de la sonde et le remplissage doivent être calculées différemment dans les différentes couches. Pour cette raison, le programme de simulation EWS (Huber, Schuler, 1997) a été adapté.

Les calculs montrent qu'avec des sondes géothermiques de 600 m (50mm duplex) on peut atteindre des températures de source au maximum de 19°C. Par un remplissage différent dans la partie inférieur et supérieur de la sonde, la température de source peut augmenter au maximum 2°C. Par une excentricité de sonde plus élevée, la température de source peut être augmentée en plus 1°C.

En utilisant une sonde coaxiale on peut atteindre des températures de 25 - 26°C avec des profondeurs de forage de 600m. Contrairement à la sonde double-U, la sonde coaxiale avec le raccord thermique nécessaire est toutefois encore plus loin de la réalisation technique.

Verdankungen

Das Projekt "Erdwärmesonden für Direktheizung" wurde begleitet von Dr. Harald Gorhan (Programm-Leiter Geothermie des Bundesamtes für Energie, BFE), Hr. Stefan Berli (Foralith AG), Hr. Michael Menzl (Haka Gerodur AG) und Hr. Ernst Rohner (Geowatt AG). Ihre engagierte Mitarbeit zu dieser Arbeit sei an dieser Stelle herzlich verdankt.

Inhaltsverzeichnis

1	Einleitung	1
	1.1 Projektziele	1
	1.2 Resultate	2
2	Untiefe und tiefe Erdwärmesonden	3
	2.1 Untiefe Erdwärmesonden	3
	2.2 Tiefe Erdwärmesonden	5
3	Theorie zur Erdwärmesonden - Berechnung	7
	3.1 Wärmeleitungsaleichung und Sprungantwort g	7
	3.1.1 Wärmeleitungsgleichung	7
	3.1.2 Der radiale Temperatur-Trichter	7
	3.1.3 Dimensionslose Temperatursprungantwort g	8
	3.1.4 Grundsätzliche Unterschiede zwischen tiefen und untiefen Erdwärmesonden	10
	3.1.5 Vergleich der Modelle	10
	3.2 Die Bohnochtemperatur T_b und die Fluidlemperatur T_f	12
	3.3 Thermische Widerstände Ra und Rh in der Donnel-U-Sonde	12
	3.3.1 Internen Bohrlochwiderstandes R₂ nach Hellström (1991)	14
	3.3.2 Bohrlochwiderstandes R _b nach Hellström (1991)	14
	3.3.3 Erreichbare Werte für die thermischen Widerstände Ra und Rb	15
	3.4 Erdwärmesondengleichung für Doppel-U-Sonden	16
	3.5 Temperaturen im Sondenfluid bei Doppel-U-Sonden	17
	3.6 I hermische Widerstande Ra / Rb an der Koaxialsonde	18
	3.6.2 Modellierung des Bohrlochwiderstandes R.	10
	2.6.2 Erroichbaro Worth für die thermischen Widerstände Pa und Ph	10
		19
4	Erweiterungen im Programm-Modul EWS	19 20
4	Erweiterungen im Programm-Modul EWS	19 20
4	 Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten I 	19 20 20 21
4	 5.0.3 Erreichbare werte für die thermischen Widerstande Ka und Ko Erweiterungen im Programm-Modul EWS	19 20 20 21 22
4	 Erweiterungen im Programm-Modul EWS Rechengitter Thermische Widerstände R und Leitfähigkeiten L Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde Modell für Doppel – U- Sonden 	19 20 21 22 23
4	5.0.3 Erreichbare werte für die thermischen Widerstande Ra und Ro Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole:	19 20 21 22 23 24
4	5.0.3 Erreichbare werte für die thermischen Widerstande Ra und Ro Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole:	19 20 21 22 23 24 24
4	S.0.3 Erreichbare Weite für die thermischen Widerstände Ra und Ro Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 4.4 Modell für Doppel – U- Sonden 4.4.1 4.5 Modell für Koaxial – Sonden 4.4	19 20 21 22 23 24 24 25
4	S.0.3 Erreichbare Weite für die thermischen Widerstände Ra und Ro Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 4.4 Modell für Doppel – U- Sonden 4.4.1 4.4.1 Stationäre Berechnung der Sole: 4.4.2 4.5 Modell für Koaxial – Sonden 4.5.1 5 Stationäre Berechnung der Sole 4.5.1 4.5 I Stationäre Berechnung der Sole 4.5.1	19 20 21 22 23 24 24 25 25 25
4	Erreichbare Weite für die thermischen Widerstände Ra und Ro Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5 Modell für Koaxial – Sonden 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole:	19 20 21 22 23 24 24 25 25 26
4 5	Erreichbare Weite für die thermischen Widerstände Ra und Ro Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5 Modell für Koaxial – Sonden 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: Rechenresultate Sole:	19 20 21 22 23 24 25 26 27
4 5	Stors Effectiveling and the thermischen Widerstande Ra und Ro Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 5.1 Erreichbare Berechnung der Sole: Rechenresultate	19 20 21 22 23 24 25 26 27
4 5	Effectivate for the finance for white stande for white stande for the finance for	20 20 21 22 23 24 25 25 26 27 27 27
4	5.0.3 Effectivate Weite für die triefmischen Widerstande Kalund Kb Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.4.3 Modell für Koaxial – Sonden 4.5.4 Sonden 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.3 Instationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 5.1 Erreichbare Berechnung der Sole: 5.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung. 5.1.1 Erreichbare Temperaturen, berechnete mit der Erdsondengleichung 5.1.2 Erreichbare Temperaturen, berechnete mit der Erdsondengleichung 5.1.3 Erreichbare Tomeraturen, berechnete mit der Erdsondenglei	20 20 21 22 23 24 25 25 26 27 27 28 20
4	Erreichbare Weite für die filemischen Widerstande Ra und Ro Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5.5 Modell für Koaxial – Sonden 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.3 Instationäre Berechnung der Sole: 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 5.1 Erreichbare Berechnung der Sole: 5.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung. 5.1.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung. 5.1.2 Erreichbare Temperaturen, berechnete mit der Erdsondengleichung 5.1.3 Erreichbare Temperaturen, berechnete mit dem EWS-Modul (10 Schichten) 5.1.4 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul	20 20 21 22 23 24 25 25 26 27 27 28 29 30
4	Enterchoare werte für die mermischen widerstande Ka und KD Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5.4 Modell für Koaxial – Sonden 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.3 Instationäre Berechnung der Sole: 4.5.4 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.3 Kechenresultate 5.1 Erreichbare Werte an der homogenen Doppel-U-Sonde 5.1.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung 5.1.2 Erreichbare Rücklauftemperaturen, berechnete mit der Erdsondengleichung 5.1.3 Erreichbare Temperaturen, berechnete mit dem EWS-Modul (10 Schichten) 5.1.4 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul 5.1.5 <th>20 20 21 22 23 24 25 25 26 27 27 28 29 30 31</th>	20 20 21 22 23 24 25 25 26 27 27 28 29 30 31
4	Erreichbare Werte für die mermischen Widerstande Ra und Ro Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5.1 Stationäre Berechnung der Sole: 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 5.1 Erreichbare Werte an der homogenen Doppel-U-Sonde. 5.1.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung. 5.1.2 Erreichbare Temperaturen, berechnete mit der Erdsondengleichung. 5.1.3 Erreichbare Rücklauftemperaturen, berechnete mit der Erdsondengleichung. 5.1.3 Erreichbare Temperaturen, berechnete mit dem EWS-Modul (10 Schichten). 5.1.4 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul (10 Schichten). 5.1.5 Wärmeleitfähigkeiten der Hinterfüllung λ_{Fil	20 21 22 23 24 25 25 26 27 27 27 28 29 30 31 31
4	Erreichbare Weite für die thermischen Widerstande Raluid Roll 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5.1 Stationäre Berechnung der Sole: 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 5.1 Erreichbare Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 5.1 Erreichbare Werte an der homogenen Doppel-U-Sonde. 5.1.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung. 5.1.2 Erreichbare Temperaturen, berechnete mit dem EWS-Modul (10 Schichten) 5.1.3 Erreichbare Temperaturen, berechnete mit dem EWS-Modul (10 Schichten) 5.1.4 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul	19 20 21 22 23 24 25 26 27 28 29 30 31 32
5	Erreichbare Werte für die mermischen Widerstande Kalund Kb Erreichbare Werte für die mermischen Widerstande Kalund Kb Erreichbare Werte für die mermischen Widerstande Kalund Kb 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 5.1 Erreichbare Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 5.1 Erreichbare Werte an der homogenen Doppel-U-Sonde 5.1.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung 5.1.2 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung	20 20 21 22 23 24 25 25 26 27 27 28 29 30 31 31 32 33
4	Erreichbare Werte for die thermischen Widerstande Ra und Ro Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 5.1 Erreichbare Werte an der homogenen Doppel-U-Sonde 5.1.1 Erreichbare Werte an der homogenen Doppel-U-Sonde 5.1.2 Erreichbare Rücklauftemperaturen, berechnete mit der Erdwärmesondengleichung 5.1.3 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul (10 Schichten) 5.1.4 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul (10 Schichten) 5.1.5 Wärmeleitf	20 20 21 22 23 24 25 26 27 27 28 29 30 31 32 33 33 33
4	5.0.3 Effectivate Weite für die infernischen Widerstande Ra und Rb Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5.4 Modell für Koaxial – Sonden 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: 8.5.1 Stationäre Berechnung der Sole: 8.5.2 Instationäre Berechnung der Sole: 8.5.1 Erreichbare Berechnung der Sole: 8.5.2 Instationäre Berechnung der Sole: 8.5.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung 5.1.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung 5.1.3 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul (10 Schichten) 5.1.4 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul 5.	20 20 21 22 23 24 25 26 27 27 28 29 30 31 32 33 35 20
4	Since the full die thermischen Widerstande Kalund Kolstein Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5 Modell für Koaxial – Sonden 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: Rechenresultate 5.1 Erreichbare Berechnung der Sole: Rechenresultate 5.1 Erreichbare Berechnung der Sole: Rechenresultate 5.1 Erreichbare Berechnung der Sole: Stationäre Berechnung der Sole: Rechenresultate 5.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung 5.1.2 Erreichbare Temperaturen, berechnete mit dem EWS-Modul (10 Schichten) 5.1.4 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul 5.1.5 Wärmeleitfähigkeiten der Hinterfüllung λ_{Fill}	20 20 21 22 23 24 25 26 27 27 28 29 30 31 32 33 35 36 27
4	Enercinate weite für die triefmischen Widerstande Ra und Romanne Kalling Radius Erweiterungen im Programm-Modul EWS 4.1 Rechengitter 4.2 Thermische Widerstände R und Leitfähigkeiten L 4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde 4.4 Modell für Doppel – U- Sonden 4.4.1 Stationäre Berechnung der Sole: 4.4.2 Instationäre Berechnung der Sole: 4.5 Modell für Koaxial – Sonden 4.5.1 Stationäre Berechnung der Sole: 4.5.2 Instationäre Berechnung der Sole: Rechenresultate 5.1 Erreichbare Berechnung der Sole: Rechenresultate 5.1 Erreichbare Berechnung der Sole: Rechenresultate 5.1 Erreichbare Berechnung der Sole: Stationäre Berechnung der Sole: Rechenresultate 5.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung 5.1.2 Erreichbare Temperaturen, berechnete mit dem EWS-Modul (10 Schichten) 5.1.4 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul 5.1.6 Rechenergebnisse mit Programm EWS in homog	20 20 21 22 23 24 25 26 27 27 28 29 30 31 32 33 35 36 37 39

6 Machbarkeit und Bohrschema	41
6.1 Koaxialsonden	41
6.2 Doppel-U-Sonden	42
6.2.1 Bohr- und Verrohrungsschema für 600m tiefe Duplex-Sonde 50 mm	42
7 Wirtschaftlichkeit	43
7.1 Randbedingungen	43
7.1.1 Gebäude	43
7.1.2 Wirtschaftliche Randbedingungen	43
7.2 Vergieichsvahante mit Warmepumpe	43 11
7.4 Vergleich und Schlussfolgerungen	44
8 Symbolyerzeichnis	45
8 1 ateinische Symbole	15
8.2 Griechische Symbole	46
9 Literaturverzeichnis	17
	-1
10 Anhang	48
10.1 Eingabeparameter für die Berechnungen im Programm EWS	48
10.1.1 Berechnungsbeispiel für 600m tiefe Koaxialsonden	48
10.1.2 Berechnungsbeispiel für 600m tiefe, inhomogene Doppel-U-Sonde	49
10.2 Quelicode für die Programm-Anpassungen im Modul EVVS	50
10.2.2. Quellcode für die Berechnung der Bohrlochwiderstände Ra und Rb	51
10.2.3 Quellcode für die Integration der Bohrlochwiderstände Ra und Rb	52
10.2.4 Quellcode für die Berechnung der äusseren Randbedingungen	52
10.2.5 Quellcode für die Berechnung des Sondenfluids	53
10.3 Stoffwerte	54
10.4 Dimensionsiose Temperatursprungantworten (g-tunctions)	55
10.5 Theneitung der Eruwannesondengielonung für Duplex-Sonden	57
10.5.2 Konstante Bohrlochtemperatur T_b	59

1 Einleitung

1.1 Projektziele

Erdwärmesonden werden heute primär im geschlossenen Kreislauf als Wärmequellen für Wärmepumpen eingesetzt. Im Molassegebiet des Schweizerischen Mittellandes ist im ungestörten Erdreich in Tiefen von 400m mit Temperaturen von ca. 24-26 °C zu rechnen. Dies ist die minimale Temperatur, mit der heute ein gut wärmegedämmtes Gebäude mit Strukturheizung auf 20 °C beheizt werden kann (d.h. direkt, ohne eine Wärmepumpe). In einer ersten Etappe soll rechnerisch untersucht werden, wie eine geschlossene Erdwärmesonde aussehen muss, damit eine minimale Temperatur von 24-26°C aus einer Tiefe von 500-600 m gefördert werden kann. Dabei muss berücksichtigt werden, dass Erdwärmesonden, die ein Temperaturniveau nutzen, das über dem Jahresmittel der Erdoberfläche liegt, keine Regeneration des Erdreichs von oben mehr möglich ist, wie dies in untiefen Erdwärmesonden der Fall ist:

Abb. 1.1 Temperaturverteilung und Wärmefluss im Erdreich mit λ_{Erde} = 2.6 W/mK um eine 600m tiefe Koaxialsonde mit Sondendurchsatz = 0.8 kg/s, Wärmeentzug 5kW nach 31 Tagen Dauerentzug. Oberflächentemperatur T_{mo} = 11°C mit einem Temperaturgradienten ΔT_{Grad} = 0.035 K/m. Die Berechnung wurde durchgeführt mit dem Programm EWS.

Für diese Untersuchung soll das im Auftrag des Bundesamtes für Energie entwickelte Programm-Modul EWS angepasst werden (Huber, Pahud, 1999). EWS rechnet in axialer Richtung mehrschichtig und ist deshalb für diese Rechnungen prädestiniert. Für die Untersuchung muss das Programm-Modul so angepasst werden, dass die Stoffwerte und Randbedingungen für jede Schicht unterschiedlich vorgegeben werden können (unterschiedliche Hinterfüllung und thermische Widerstände Ra und Rb pro Schicht).

Mit einer Kosten-Nutzenanalyse soll die Wirtschaftlichkeit von tieferen Erdwärmesonden in Abhängigkeit des Strompreises und der möglichen Preisentwicklung bei der Bohrung untersucht werden. Dabei sollen auch die neuen Bohrtechniken mit einfliessen.

1.2 Resultate

In einem ersten Teil der Arbeiten wurden analytische Modelle aufgestellt, mit denen Erdwärmesonden berechnet werden können. Dabei wurde die Erdwärmesondengleichung für Doppel-U-Sonden hergeleitet, mit der relativ einfach die Quellentemperatur (Fluidtemperatur am Sondenaustritt) ohne aufwendige Simulationen berechnet werden kann. Ausserdem wurde gezeigt, dass auch die Fluidtemperatur über die ganze Sondentiefe relativ einfach analytisch berechnet werden kann. Im Anhang des Berichtes werden aber auch die Grenzen für den Einsatz dieser Modelle aufgezeigt.

Die durchgeführten Untersuchungen haben gezeigt, dass für tiefe Erdwärmesonden einfache, einschichtige Rechenmodelle und analytische Ansätze an ihre Grenzen stossen und mehrschichtige Rechenmodelle anzuwenden sind. Dies deshalb, weil bei tiefen Erdwärmesonden ein Wärmetransport von den unteren in die oberen Erdschichten stattfindet und dieser Prozess nur mit einem mehrschichtigen Modell wie z. B. dem EWS-Modul korrekt abgebildet werden kann. Dieser Wärmetransport führt aber auch dazu, dass sich in den oberen Erdschichten der natürliche Temperaturgradient um die Erdwärmesonden verringert und so eine "isolierende" Wirkung einstellt. Die wärmedämmende Hinterfüllungen im oberen Sondenbereich bringt deshalb nur eine beschränkte, unter den Erwartungen liegende Temperaturerhöhung der Quellentemperatur.

Im Vergleich zwischen Koaxialsonden und Doppel-U-Sonden führt die Koaxialsonde zu ca. 4°C-6°C höheren Quellentemperaturen. Damit lassen sich bei 600m Bohrtiefe bis zu 26°C Quellentemperatur erreichen. Dies setzt aber eine Konstruktion ohne thermischen Kontaktwiderstand voraus, was aus heutiger Sicht mit den gängigen Bohrschemata nur mit sehr grossem Aufwand realisierbar ist. Dazu ist eine Hinterfüllung im unteren Drittel der Sonde notwendig. Realistischerweise ist dies nur mit einem Zementationsschuh möglich, was eine relativ teure Lösung darstellt.

Besser sieht die Realisierbarkeit von 600m tiefen Doppel-U-Sonden aus. Machbarkeitsabklärungen der Firma Haka-Gerodur AG zeigen für 50mm Duplex-Sonden positive Resultate. Im geologisch günstigsten Fall lässt sich eine solche Bohrung im unteren Teil auch ohne Verrohrung und damit ohne einen zusätzlichen Kontaktwiderstand realisieren. Die maximalen Quellentemperaturen für 600m tiefe Doppel-U-Sonden liegen aber nur zwischen 19°C und 20°C.

Mit einer differenzierten Hinterfüllung (unten mit guter, oben mit schlechter Wärmeleitfähigkeit) lässt sich die Quellentemperatur erhöhen. Um diesen Effekt berechnen zu können, wurde das EWS-Modul angepasst. Neu sind nun in jeder horizontalen Erdschicht unterschiedliche Bohrlochwiderstände berechenbar. Für die Berechnung der Bohrlochwiderstände wurden neu die Modelle von Hellström (1991) ins Programm-Modul implementiert.

Die Berechnung mit diesen neuen Modellen hat ergeben, dass mit einer inhomogenen Hinterfüllung (oben schlechte, unten gute Wärmeleitfähigkeit) die Quellentemperatur um maximal 2°C erhöht werden kann. Dies ist allerdings in den meisten Fällen immer noch zu wenig für eine Direktheizung eines Wohngebäudes.

2 Untiefe und tiefe Erdwärmesonden

2.1 Untiefe Erdwärmesonden

Eine mögliche Definition für den Begriff der untiefen Erdwärmesonden liegt in der Herkunft der Wärme im Gleichgewichtszustand zwischen Wärmeentzug aus dem Erdreich und nachströmender Wärme. Im Gleichgewichtszustand fliesst *im Jahresdurchschnitt* die gleiche Energiemenge, die mit einer Erdwärmesonde dem Erdreich entzogen wird von oben oder von unten wieder nach, es findet somit keine weitere Auskühlung der Erde mehr statt und der "Temperaturtrichter" im Erdreich vergrössert sich radial auch nicht mehr. [Huber, Pahud, 1999a].

Abb. 2.1 Wärmeflusslinien für Einzelsonden im Gleichgewichtszustand im Jahresmittel (ohne Jahreszeiten-Transienten) bei untiefen Erdwärmesonden.

Liegt die Temperatur des Sondenfluids beim Wärmeentzug immer unter der Jahresmitteltemperatur der Erdoberfläche, so kommt die nachströmende Wärme im Gleichgewichtszustand primär von der Erdoberfläche und wir sprechen von untiefen Erdwärmesonden. Die untiefe Erdwärmesonde nutzt somit primär die **saisonal gespeicherte Sonnenenergie**, die bedingt durch den "Temperaturtrichter" im Sommer zu einem zusätzlichen Wärmefluss von

Abb. 2.2 Wärmeflusslinien beim Wärmeentzug, berechnet mit Programm EWS

Erdoberfläche ins Erdreich führt und im der Winterhalbjahr dem Erdreich wieder entzogen wird. Die Nutzung der untiefen Erdwärmesonde würde somit selbst dann funktionieren, wenn der Erdkern aus Eis bestehen würde! Die untiefe Erdwärmesonde ist auch nicht zwingend auf den eher geringen, geothermischen Wärmefluss aus dem Erdinneren angewiesen, wobei dieser die Leistungsfähigkeit einer Sonde durchaus erhöhen kann. Abb. 2.1 zeigt die Wärmeflusslinien im Jahresmittel ohne die Jahreszeiten - Transienten. Beim Wärmentzug der Sonde sind diese überlagert und führen im Sondennahbereich zu der Temperaturverteilung und den Wärmeflusslinien aus Abb. 2.2. Dargestellt ist das Erdreich in einem Radius von 2m um eine Sonde von 100m Tiefe, berechnet für ein typisches Einfamilienhaus-Entzugsprofil mit dem Programm-Modul EWS [Huber, Schuler, 1997]. Abb. 2.3 (Programm Cosond) und Abb. 2.4 (Programm Fracture) zeigen ein analoges Bild für die Wärmeflusslinien.

Abb. 2.3 Wärmeflusslinien beim Wärmeentzug, Anlage Elgg am kältesten Wintertag, berechnet mit dem Programm Cosond [Eugster, 1998]. Zu beachten ist die unterschiedliche Skala in x- und z-Richtung.

Abb. 2.4 Wärmeflusslinien bei einer 160m tiefen Erdwärmesonde bei einem Response-Test mit Wärmeeintrag, berechnet mit dem Programm Fracture [Signorelli, 2004].

2.2 Tiefe Erdwärmesonden

Im vorliegenden Projekt soll das Verhalten von Erdwärmesonden untersucht werden, mit denen Quellentemperaturen von 24-25°C erreicht werden können, um damit ein Gebäude direkt, ohne die Hilfe einer Wärmepumpe, beheizen zu können. Diese Temperaturen liegen deutlich über den Jahres-Durchschnittstemperaturen der Erdoberfläche. Mit diesen "Tiefen Erdwärmesonden" wird somit im Gleichgewichtszustand nicht mehr die Sonnenenergie, sondern ausschliesslich der **geothermische Wärmefluss aus dem Erdinnern** genutzt. Abb. 2.5 zeigt diesen geothermischen Wärmefluss in der Schweiz nach Medici und Rybach [1995].

Abb. 2.5 Geothermischer Wärmefluss der Schweiz nach Medici, Rybach [1995]..

Der geothermische Wärmefluss q_{geo} ergibt sich aus der Temperaturzunahme mit der Tiefe ΔT_{Grad} und der Wärmeleitfähigkeit der Erde λ_{Earth} aus der Beziehung

$$\dot{q}_{geo} = \lambda_{Earth} \cdot \Delta T_{Grad} \quad [W/m^2]$$
 GI. 2.1

Für die Stadt Zürich zum Beispiel ergibt sich aus Abb. 2.5 ein geothermischer Wärmefluss von ca. 0.085 W/m². Die hier anzutreffenden, typischen Gesteinschichten der Oberen Süsswassermolasse OSM (cf Abb. 2.6 und Abb. 2.7) haben eine Wärmeleitfähigkeit von 2.5 – 2.7 W/mK. Aus Gl. 2.1 ergibt sich damit ein Temperaturgradient für Zürich von ca. 0.033 K/m.

Abb. 2.6 Verteilung der Tertiärschichten im Schweizerischen Mittelland nach Leu et al. (1999). OSM: Obere Süsswassermolasse, OMM: Obere Meeresmolasse, USM: Untere Süsswassermolasse

Geothermie

Abb. 2.7 Stoffwerte des Bodens im Molassebecken des Schweizerischen Mittellandes nach Leu et al. (1999).

Die Temperatur des ungestörten Erdreichs T_m in der Tiefe z kann aus der mittleren Temperatur der Erdoberfläche T_{mo} und dem Temperaturgradienten ΔT_{Grad} berechnet werden mit

$$T_{m}(z) = T_{mo} + z \cdot \Delta T_{Grad}$$

Gl. 2.2

In GI. 2.2 sind die überlagerten Jahreszeiten-Transienten nicht berücksichtigt. Diese sind bis zur Eindringtiefe von ca. 10m Tiefe sichtbar.

Um die mittlere, ungestörte Erdreichtemperatur in der Tiefe z zu bestimmen, ist also zusätzlich die Kenntnis der mittleren Temperatur der Erdoberfläche T_{mo} notwendig. Nach Signorelli [2004] liegt diese im Mittel im Schweizerischen Mittelland unter 1000 Meter Meereshöhe ca. 1.4°C über der mittleren Jahresluftwobei temperatur, der Schwankungsbereich zwischen 0.8°C im ländlichen Bereich und 2°C im städtischen Bereich liegen kann.

Abb. 2.8 Mittlere Oberflächentemperaturen T_{mo} der Schweiz nach Signorelli [2004].

$T_{mo} = \overline{T}_{Luft} + 1.4^{\circ}C$	Im Durchschnitt in der Schweiz, unter 1000 m. ü. M.	
$T_{mo} = \overline{T}_{Luft} + 0.8^{\circ}C$	Im bewachsenen, beschattetem Umfeld	Gl. 2.3
$T_{mo} = \overline{T}_{Luft} + 2.0^{\circ}C$	Im überbauten, städtischem Umfeld	

Mit der Höhe über Meer Z gibt kann nach Signorelli [2004] T_{mo} auch berechnet werden mit

$$T_{mo} = 15.23 - 1.08 \cdot 10^{-2} \cdot Z + 5.61 \cdot 10^{-6} \cdot Z^2 - 1.5 \cdot 10^{-9} \cdot Z^3 \quad [^{\circ}C]$$
Gl. 2.4

Wie Hopkirk, Rybach und Stadler [1994] festgestellt haben, liegt die wirtschaftlich interessanteste Bohrtiefe für Tiefe Erdwärmesonden bei 500 – 1000m, da in diesem Bereich tiefe Sonden mit leichten Bohrgeräten am wirtschaftlichsten abgeteuft werden können. Die Temperaturen in dieser Tiefe liegen für Zürich mit Gl. 2.1, Gl. 2.2 und Gl. 2.3 im Bereich von 28 – 45°C.

3 Theorie zur Erdwärmesonden - Berechnung

3.1 Wärmeleitungsgleichung und Sprungantwort g

3.1.1 Wärmeleitungsgleichung

Erdwärmesonden für Direktheizung

Phase I: Modellbildung und Simulation

Für die nachfolgenden Betrachtungen wird vorausgesetzt, dass der dominante Wärmetransportmechanismus im Erdreich die Wärmeleitung ist, der konvektive Wärmetransport durch Wasserbewegungen im Erdreich also vernachlässigt werden kann. Das Problem der Wärmeleitung im Erdreich um eine Erdwärmesonde ist axialsymmetrisch. In Axialkoordinaten kann die Wärmeleitungsgleichung um eine Erdwärmesonde in radialer Richtung geschrieben werden als

Geothermie

$$\frac{1}{a} \cdot \frac{\partial T_{\text{Earth}}}{\partial t} = \frac{\partial^2 T_{\text{Earth}}}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial T_{\text{Earth}}}{\partial r}$$
GI. 3.1

wobei die Temperaturleitfähigkeit a definiert ist durch

Def:
$$a = \frac{\lambda}{cp_{Earth} \cdot \rho_{Earth}}$$
 GI. 3.2

Die Wärmeleitungsgleichung ist linear, so dass sowohl Einzelsonden, als auch Sondenfelder bei geometrischer Ähnlichkeit ähnliche Temperatur-Sprungantworten aufweisen. Diese Ähnlichkeit bezieht sich auf alle Temperaturen im Erdreich für alle Radien r um die Erdwärmesonden und für alle Zeiten t.

Bei einem Wärmeentzug aus einer Erdwärmesonde entsteht so im Erdreich eine Temperaturabsenkung ΔT_{Earth} gegenüber der unbeeinflussten Erdreichtemperatur (=Temperaturtrichter), die sich mit fortlaufendem Entzug radial ausweitet. Diese Temperaturabsenkung ΔT_{Earth} kann mit der spezifischen Entzugsleistung \dot{q} und der Wärmeleitfähigkeit λ_{Earth} dimensionsbefreit werden:

Def:
$$g(r,t) = \frac{\Delta T_{Earth}(r,t) 2\pi \lambda_{Earth}}{\dot{q}}$$
 GI. 3.3

3.1.2 Der radiale Temperatur-Trichter

Im stationären Fall ist der radiale Wärmefluss *q* im Sonden-Nahbereich konstant und es gilt

$$\frac{\dot{q}}{2 \cdot \pi \cdot r} = \frac{\partial T_{\text{Earth}}}{\partial r} \cdot \lambda_{\text{Earth}} = \frac{\partial g}{\partial r} \cdot \frac{\dot{q}}{2 \cdot \pi}$$
Gl. 3.4

Durch Integration von r bis r₁ wird daraus

$$g(r) = g(r_1) - \ln\left(\frac{r}{r_1}\right)$$
GI. 3.5

Diese Beziehung erlaubt es, mit einer einzigen Sprungantwort g das Temperaturverhalten im ganzen Sonden-Nahbereich abzuschätzen und bei bekannter Sprungantwort g an der Stelle r₁ auf die Sprungantwort g an der Stelle r zu schliessen. Zu beachten ist dabei allerdings, dass für kleine Zeitschritte t die Annahme eines stationären Falles zu grösseren Abweichungen führt.

3.1.3 Dimensionslose Temperatursprungantwort g

Carslaw & Jaeger haben 1959 die Wärmeleitungsgleichung für eine unendliche Linienquelle analytisch gelöst und haben für g die folgenden Beziehung gefunden:

$$g = \frac{1}{2} \cdot \left[-\gamma - \ln\left(\frac{r^2}{4 \cdot t \cdot a}\right) - \sum_{n=1}^{\infty} (-1)^n \frac{\left(\frac{r^2}{4 \cdot a \cdot t}\right)^n}{n \cdot n!} \right] \cong \frac{1}{2} \cdot \left[\ln\left(\frac{4 \cdot t \cdot a}{r^2}\right) - \gamma \right]$$
Gl. 3.6

wobei γ =0.5772.. die Eulerkonstant ist. Die Gültigkeit dieser Beziehung (Fehler kleiner 10%) ist beschränkt auf

$$t > \frac{5 \cdot r^2}{a}$$
 Gl. 3.7

Werner, A.; Bigler, R.; Niederhauser, A. et. al. (1996) sind durch eine Analogie, abgeleitet aus der Brunnengleichung, auf die identische Lösung gekommen. Im Programm-Modul EWS ist Gl. 3.6 eingebaut und diese kann wahlweise, als Alternative zur g-Funktion von Eskilson, als äussere Randbedingung für das Simulationsgebiet ausgewählt werden.

Da bei einer unendlichen Linienquelle aus Gründen der Symmetrie das Nachströmen von Wärme weder von oben, noch von unten möglich ist, führt der Ansatz von Carslaw und Jaeger zu einer stetigen Vergrösserung des Temperaturtrichters, ein Gleichgewichtszustand ist mit diesem Ansatz nicht möglich. Da aber untiefe Erdwärmesonden primär die im Sommer von der Erdoberfläche ins Erdreich gespeicherte Wärme nutzen, wurde an der Universität Lund ein Ansatz für Erdwärmesonden mit der endlichen Sondenlänge H entwickelt.

Nach Claesson und Eskilson (1987) besitzen Erdwärmesonden eine Zeitkonstante t_s , mit der das zeitliche Verhalten des Erdreichs um die Erdwärmesonden dimensionsbefreit werden kann:

$$t_s = \frac{H^2}{9a}$$
 Gl. 3.8

Die dimensionslose Zahl Es von Eskilson

$$Es = \frac{t}{t_s} = \frac{9a}{H^2}t$$
Gl. 3.9

kann somit als dimensionslose Zeit für Sondenfelder und Einzelsonden betrachtet werden.

Die Kenntnis der Zeitkonstanten ist vor allem bei nicht ausgeglichener jährlicher Entzugsbilanz wesentlich. Bis zum Zeitpunkt Es = 0.1 muss mit einer merklichen Abkühlung bzw. Erwärmung des Erdreiches gerechnet werden. Danach erfolgt nur noch eine sehr geringe Temperaturänderung im Erdreich. Der Gleichgewichtszustand zwischen Wärmeentzug und nachhaltigem Nachfliessen der Wärme ist dann ab ca. Es = 10 erreicht.

Die dimensionslose Temperatursprungantwort g (="g-function") ist nach Eskilson (1987) sowohl für Einzelsonden als auch für Sondenfelder einzig eine Funktion der dimensionslosen Zeit *Es* und des dimensionslosen Sondenabstandes r_b/H . Man geht dabei von einem konstanten, spezifischen Wärmeentzug pro Sondenlänge \dot{q} aus.

Für eine Einzelsonde im Bereich 5 $r_1^2/a < t < t_s$ kann die Funktion g bei einem maximalen Fehler von 7 % angenähert werden mit

$$g(t, r_1) = \ln(\frac{H}{2r_1}) + 0.5 \ln(Es)$$
 GI. 3.10

Für Zeiten grösser als t_s strebt die Einzelsonde dem folgenden Gleichgewichtszustand zu:

$$g(r_1) = ln(\frac{H}{2 \cdot r_1})$$
 GI. 3.11

In Abb. 3.1 sind als Beispiel die dimensionslosen Temperatur-Sprungantworten g von zwei Erdwärmesonden im Abstand B eingezeichnet. Im Vergleich dazu ist gestrichelt die g-function einer Einzelsonde dargestellt. Weitere Temperatur-Sprungantworten für verschiedene Erdwärmesondenfelder sind in Anhang Gl. 3.10 zu finden.

Abb. 3.1 Dimensionslose Sprungantwort g für zwei Erdwärmesonden mit dem Abstand B nach Eskilson (1987).

Die Theorie von (Claesson und Eskilson, 1987) geht davon aus, dass es bei untiefen Erdwärmesonden nach ca. 10 t_s der Gleichgewichtszustand erreicht ist, bei dem mehr als 95% der Wärme, die dem Erdreich durch eine Erdwärmesonde entzogen wird, im Jahresmittel von der Erdoberfläche zusätzlich wieder ins Erdreich nachströmt (cf. Abb. 3.2). Dies ist eine Grundvoraussetzung dafür, dass Gl. 3.10 und Gl. 3.11 gültig sind.

Abb. 3.2 Anteil am Wärmeentzug, der von der Bodenoberfläche in die Erde zusätzlich nachströmt für eine Erdwärmesonde mit H=110m und Temperaturleitfähigkeit a=1.62*10⁻⁶ m²s (Huber, Pahud, 1999a).

3.1.4 Grundsätzliche Unterschiede zwischen tiefen und untiefen Erdwärmesonden

Wenn allerdings die Fluidtemperatur beim Entzug höher liegt als die mittlere Erdoberflächentemperatur, so ist es nicht mehr möglich, dass im Jahresmittel ein zusätzlicher Wärmestrom von der Erdoberfläche ins Erdreich induziert wird. Gl. 3.10 und Gl. 3.11 sind für diesen Fall somit nicht mehr gültig.

Für tiefe Erdwärmesonden ist deshalb ein Ansatz mit einer unendlich tiefen Linienquelle besser geeignet. Bei diesen ist allerdings bereits vom Ansatz her das Nachströmen in vertikaler Richtung ausgeschlossen und es ist damit nicht möglich, die Frage der Herkunft der Wärme und die Erreichbarkeit eines Gleichgewichtszustandes zu klären.

Wie der nachfolgende Vergleich allerdings zeigt, ist selbst bei tiefen Erdwärmesonden eine Berechnung mit dem Ansatz von Claesson und Eskilson möglich, da die Zeitkonstante für tiefe Erdwärmesonden so gross wird, dass im betrachteten Zeitrahmen keine nennenswerte Abweichung der Modelle mehr festgestellt werden kann (cf. Abb. 3.3)

3.1.5 Vergleich der Modelle

In Abb. 3.3 werden die Ansatze von Carslaw & Jaeger für eine unendlich tiefe Erdwärmesonde mit dem Ansatz von Eskilson für je eine 10m, 100m und 500m tiefe Erdwärmesonde verglichen. Bis zum Erreichen der Zeitkonstante t_s ist zwischen den Modellen keine nennenswerte Abweichung festzustellen.

Abb. 3.3 Dimensionslose Sprungantwort g nach der Theorie von Carslaw & Jaeger (1959), Werner et al. (1996) und Eskilson (1987).

3.2 Die Bohrlochtemperatur T_b und die Fluidtemperatur T_f

Um die Temperatur im Erdreich zu erhalten, kann nun die Temperatur-Sprungantwort ΔT von der ungestörten Anfangstemperatur T_m abgezählt werden (Superpositionsprinzip). Die Temperatur am Bohrlochrand $T_{Earth}(r_1)$ (=Bohrlochtemperatur T_b) kann aus g und T_m berechnet werden mit

$$T_{b}(z) = T_{m}(z) - \frac{\dot{q}}{R_{g}} = T_{m}(z) - \frac{\dot{q}}{2 \pi \lambda_{Earth}} g(t, r_{I})$$
GI. 3.12

 T_m ist die mittlere Erdreichtemperatur im ungestörten Zustand in der Tiefe z. Sie berechnet sich aus der durchschnittlichen Jahres-Erdoberflächentemperatur T_{mo} und dem Temperaturgradienten ΔT_{Grad} mit Hilfe der Gleichung Gl. 2.2

Die durchschnittliche Jahres-Erdoberflächentemperatur T_{mo} ist gleich der durchschnittlichen Jahres-Lufttemperatur plus einer mittleren Bodenerwärmung die typischerweise zwischen 0.8 bis 2 °C liegt (cf. Kapitel 2.2), der Temperaturgradient ΔT_{Grad} schwankt in der Schweiz typischerweise zwischen von 0.025 bis 0.045 K/m.

Die über die Bohrtiefe gemittelte Bohrlochtemperatur $\overline{T_{_{b}}}$ ist definiert als

Def
$$\overline{T_b} = \frac{1}{H} \cdot \int_0^H T_b(z) \cdot dz$$
 GI. 3.13

Für den Fall eines konstanten Wärmeentzugs pro Bohrlänge \dot{q} kann die über die Tiefe im Bohrloch gemittelte Bohrlochtemperatur $\overline{T_{b}}$ berechnet werden mit

$$\overline{T_{b}} = \overline{T_{m}} - \frac{\dot{q}}{R_{g}} = \overline{T_{m}} - \frac{\dot{q}}{2 \pi \lambda_{Earth}} g(t, r_{I})$$
Gl. 3.14

wobei

Abb. 3.4 Erdreichtemperatur um eine 300m tiefe Erdwärmesonde mit λ_{Earth} = 2.4 W/mK nach 30 Tagen Dauerentzug mit 40 W/m, berechnet mit Gl. 3.10, Gl. 3.12 und Gl. 3.15.

Geothermie

3.2.1 Die Fluidtemperatur T_f

Die mittlere Fluidtemperatur T_f ist definiert als der arithmetische Mittelwert des nach unten und des nach oben strömenden Sondenfluids

Def:
$$T_{f}(z) = \frac{T_{up}(z) + T_{down}(z)}{2}$$
 Gl. 3.16

Die Fluidtemperatur T_f ist also eine Funktion der Tiefe z im Bohrloch. Die mittlere Fluidtemperatur $\overline{T_{f}}$ ist definiert als

Def:
$$\overline{T_f} = \frac{1}{2} \cdot (T_{\text{Quelle}} + T_{\text{Rücklauf}})$$
 GI. 3.17

λ_{Fill}

Thermische Widerstände Ra und Rb in der Doppel-U-Sonde 3.3

Eine idealisierte Doppel-U-Sonde mit dem Bohrradius r₁ und mit den 4 Sondenrohren (mit Innenradius ro und Aussenradius rs) ist auf nebenstehendem Bild zu sehen. In je 2 Sondenrohren fliesst das Sondenfluid nach unten und nach oben. Die Hinterfüllung besitzt die Wärmeleitfähigkeit λ_{Fill} , die Sondenrohre λ_s und das umgebende Erdreich λ_{Earth} . Die genaue Lage der 4 Sondenrohre in der Bohrung kann definiert werden mit der Exzentrizität b

$$b = \frac{Bu}{2 \cdot r_1} \qquad GI. 3.18$$

Abb. 3.5 Bezeichnungen an der Doppel-U-Sonde

Die Exzentrizität b ist mit dem Rohrabstand Bu ("shank spacing") gemäss Abb. 3.5 definiert. Die geometrisch maximal mögliche Exzentrizität b_{Max} beträgt:

$$b_{Max} = \frac{2 \cdot r_1 - 2 \cdot r_s}{2 \cdot r_1} = 1 - \frac{r_s}{r_1}$$
Gl. 3.19

Die geometrisch minimale Exzentrizität b_{Min} (bei einem nicht zentrierten Füllrohr) beträgt:

$$b_{Min} = \frac{r_s}{r_1}$$
 GI. 3.20

Als reine Stoffgrösse wird der Konduktivitätsparameter σ definiert mit

$$\sigma = \frac{\lambda_{Fill} - \lambda_{Earth}}{\lambda_{Fill} + \lambda_{Earth}}$$
Gl. 3.21

Der interne thermische Bohrlochwiderstand R_a [Km/W] ist eine charakteristische Grösse für die längenbezogenen, thermischen "Verluste" Δq_i [W/m] des heraufströmenden Fluids an das nach unten strömende Fluid und ist unabhängig von der Tiefe im Bohrloch:

Def:
$$R_a = \frac{T_{up}(z) - T_{down}(z)}{\Delta q_i(z)}$$
 Gl. 3.22

Mit der mittleren Fluidtemperatur T_f in der Sonde und der Bohrlochtemperatur T_b kann der thermische Bohrlochwiderstand R_b definiert werden als

Def:
$$R_{b} = \frac{T_{b}(z) - T_{f}(z)}{\dot{q}}$$
 GI. 3.23

Der Bohrlochwiderstand R_b ist unabhängig von der Tiefe im Bohrloch und setzt sich zusammen aus dem Bohrloch-Hinterfüllungswiderstand R_c und dem Wärmeübergangswiderstand R_a von der Hinterfüllung ans Sondenfluid:

$$R_{b} = R_{a} + R_{c}$$
Gl. 3.24

Bei Doppel-U-Sonden kann der Wärmeübergangswiderstand R_{α} berechnet werden mit

$$R_{\alpha} = \frac{1}{8 \cdot \pi \cdot \alpha \cdot r_{o}}$$
Gl. 3.25

Der effektive Bohrlochwiderstand R_b^* ist mit der über die Bohrliefe gemittelten Bohrlochtemperatur $\overline{T_b}$ und der mittleren Fluidtemperatur $\overline{T_f}$ definiert als

Def:
$$R_b^* = \frac{\overline{T_b} - \overline{T_f}}{\dot{q}}$$
 GI. 3.26

Für den Fall eines konstanten Wärmeentzugs pro Bohrlänge \dot{q} kann T_b mit den thermischen Widerständen R_a und R_b für Doppel-U-Sonden nach Gl. 10.21 berechnet werden mit

$$T_{b} = \dot{q} \cdot R_{b} + \overline{T_{f}} + \frac{\dot{q} \cdot z}{R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}} \left(H - \frac{z}{2} \right)$$
GI. 3.27

und damit wird

$$\overline{T_{b}} = \frac{1}{H} \cdot \int_{0}^{H} \overline{T_{b}} \cdot \partial z = \dot{q} \cdot R_{b} + \overline{T_{f}} + \frac{\dot{q} \cdot H^{2}}{3 \cdot R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}}$$
Gl. 3.28

und daraus wird R_b^* zu (cf. Gl. 10.23)

$$R_{b}^{*} = R_{b} + \frac{1}{3} \cdot \frac{1}{R_{a}} \cdot \frac{H^{2}}{\dot{m}^{2} \cdot cp_{Sole}^{2}}$$
Gl. 3.29

3.3.1 Internen Bohrlochwiderstandes R_a nach Hellström (1991)

Nach Hellström (1991, S. 147, Formel 9.149) kann der interne Bohrlochwiderstand R_a für Doppel-U-Sonden mit symmetrischer Sondenrohr-Anordnung berechnet werden mit

$$R_{a} = \frac{1}{\pi \cdot \lambda_{Fill}} \left[ln \left(\frac{\sqrt{2} \cdot b \cdot r_{l}}{r_{o}} \right) - \frac{1}{2} \cdot ln \left(\frac{2 \cdot b \cdot r_{l}}{r_{o}} \right) - \frac{1}{2} \cdot \sigma \cdot ln \left(\frac{1 - b^{4}}{1 + b^{4}} \right) \right] + \frac{1}{2 \cdot \pi \cdot r_{o} \cdot \alpha} + R_{s}$$
Gl. 3.30

wobei R_s der thermischer Widerstand der Sondenrohr-Wand ist, der berechnet wird mit

$$\mathbf{R}_{s} = \frac{1}{2 \cdot \pi \cdot \lambda_{s}} \cdot \ln\left(\frac{\mathbf{r}_{s}}{\mathbf{r}_{o}}\right)$$
Gl. 3.31

3.3.2 Bohrlochwiderstandes R_b nach Hellström (1991)

Für eine Doppel-U-Sonde kann nach Hellström (1991, S. 89, Formel 8.69) der Bohrlochwiderstand R_{b} berechnet werden mit

$$R_{b} = \frac{1}{8 \cdot \pi \cdot \lambda_{Fill}} \cdot \left[\beta + \ln\left(\frac{r_{1}}{r_{o}}\right) + \ln\left(\frac{r_{1}}{Bu}\right) + \sigma \cdot \ln\left(\frac{r_{1}^{4}}{r_{1}^{4} - \frac{Bu^{4}}{16}}\right) - \frac{\frac{r_{o}^{2}}{Bu^{2}} \left[1 - \sigma \cdot \frac{\frac{1}{4}Bu^{4}}{(r_{1}^{4} - \frac{Bu^{4}}{16})} \right]^{2}}{\left\{ \frac{1 + \beta}{1 - \beta} + \frac{r_{o}^{2}}{Bu^{2}} \left[1 + \sigma \cdot \frac{Bu^{4} \cdot r_{1}^{4}}{\left(r_{1}^{4} - \frac{Bu^{4}}{16}\right)^{2}} \right] \right\}} \right]$$
Gl. 3.32

mit

$$\beta = 2 \cdot \pi \cdot \lambda_{\text{Fill}} \cdot \left[\mathbf{R}_{\alpha} + \mathbf{R}_{w} \right] = \lambda_{\text{Fill}} \cdot \left[\frac{1}{\mathbf{r}_{o} \cdot \alpha} + \frac{1}{\lambda_{s}} \cdot \ln \left(\frac{\mathbf{r}_{s}}{\mathbf{r}_{o}} \right) \right]$$
GI. 3.33

3.3.3 Erreichbare Werte für die thermischen Widerstände Ra und Rb

Nachfolgend wurde untersucht, welche thermischen Widerstände bei Doppel-U-Sonden erreichbar sind. Berechnet wurden die Werte mit Gl. 3.30 und Gl. 3.32.

Abb. 3.6 Ra und Rb in Funktion der Exzentrizität b bei Doppel-U-Sonden

Abb. 3.7

Ra und Rb in Funktion der Exzentrizität b bei Doppel-U-Sonden

3.4 Erdwärmesondengleichung für Doppel-U-Sonden

Mit Gl. 3.12 kann die zeitliche Entwicklung der durchschnittlichen Bohrlochtemperatur berechnet werden, sofern die Temperatur-Sprungantwort g bekannt ist. In diesem Abschnitt wird nun gezeigt, wie sich damit die Quellentemperatur T_{Quelle} , d. h. die durchschnittliche Temperatur der Sole, die aus der Sonde kommt, bestimmen lässt. Aus der Definition **Fehler! Verweisquelle konnte nicht gefunden werden.** kann die Quellentemperatur T_{Quelle} berechnet werden mit

$$T_{\text{Quelle}} = 2 \cdot \overline{T_{\text{f}}} - T_{\text{Rücklauf}}$$
Gl. 3.34

Mit der Energiebilanz für die Rücklauftemperatur

$$T_{Rücklauf} = T_{Quelle} - \frac{\dot{q} H}{cp_{Sole} \cdot \dot{m}}$$
Gl. 3.35

und den Gleichungen Gl. 3.14, Gl. 3.26 und Gl. 3.34 kann die Quellentemperatur berechnet werden nach

$$T_{\text{Quelle}} = \overline{T_{\text{b}}} - \left[R_{\text{b}}^{*} - \frac{H}{2 \cdot \dot{m} \cdot cp_{\text{Sole}}}\right]\dot{q} = \overline{T_{\text{b}}} - \left[R_{\text{b}} + \frac{1}{3} \cdot \frac{1}{R_{\text{a}}} \cdot \frac{H^{2}}{\dot{m}^{2} \cdot cp_{\text{Sole}}^{2}} - \frac{H}{2 \cdot \dot{m}_{\text{Sole}} \cdot cp_{\text{Sole}}}\right]\dot{q} \quad \text{GI. 3.36}$$

Dabei ist H die Sondenlänge, \dot{q} der Wärmeentzug aus der Sonde pro Bohrlänge und \dot{m}_{Sole} der Massenstrom der Sole pro Sonde.

Damit erhält man die Erdwärmesondengleichung für Doppel-U-Sonden:

$$T_{\text{Quelle}} = T_{\text{mo}} + \Delta T_{\text{Grad}} \cdot \frac{H}{2} - \left[\frac{g(t, r_1)}{2\pi \lambda_{\text{Earth}}} + R_b + \frac{1}{3} \cdot \frac{1}{R_a} \cdot \frac{H^2}{\dot{m}^2 \cdot \text{cp}_{\text{Sole}}^2} - \frac{H}{2 \cdot \dot{m} \cdot \text{cp}_{\text{Sole}}} \right] \dot{q} \qquad \text{GI. 3.37}$$

Der thermische Bohrloch-Widerstand R_b (Hellström, 1991) kann aufgeteilt werden in den Wärmeübergangswiderstand zwischen der Sole und der Sonde R_a und den thermischen Widerstand R_c bis zum Bohrlochradius, womit für Doppel-U-Sonden aus Gl. 3.37 und Gl. 3.25 die folgende Beziehung wird:

$$T_{\text{Quelle}} = T_{\text{mo}} + \Delta T_{\text{Grad}} \cdot \frac{H}{2} - \left[\frac{g(t, r_1)}{2\pi \lambda_{\text{Earth}}} + \frac{1}{8\pi \alpha r_0} + R_c + \frac{1}{3} \cdot \frac{1}{R_a} \cdot \frac{H^2}{\dot{m}^2 \cdot cp_{\text{Sole}}^2} - \frac{H}{2 \cdot \dot{m} \cdot cp_{\text{Sole}}} \right] \dot{q} \quad \text{GI. 3.38}$$

 α ist der Wärmeübergangskoeffizient des Sondenfluids an die Sonde und r_o der Innenradius der Sondenrohre (z. B. 26 mm für eine 32 mm-Doppel-U-Sonde). Ansätze für α sind z. B. in (Huber und Schuler, 1997) zu finden.

Für die Sonden-Rücklauftemperatur T_{Rücklauf} (massgebend für die Frostsicherheit) gilt damit:

$$T_{\text{Rücklauf}} = T_{\text{mo}} + \Delta T_{\text{Grad}} \cdot \frac{H}{2} - \left[\frac{g(t, r_1)}{2\pi \lambda_{\text{Earth}}} + R_b + \frac{1}{3} \cdot \frac{1}{R_a} \cdot \frac{H^2}{\dot{m}^2 \cdot cp_{\text{Sole}}^2} + \frac{H}{2 \cdot \dot{m} \cdot cp_{\text{Sole}}} \right] \dot{q} \qquad \text{GI. 3.39}$$

Grundvoraussetzung für die Gültigkeit der Erdwärmesondengleich ist der konstante Wärmeentzug \dot{q} über die ganze Bohrtiefe. Für Tiefe Erdwärmesonden und kleine Sondendurchsätze \dot{m} ist diese Grundvoraussetzung oft nicht mehr gegeben. Für diesen Fall ist eine Simulationslösung wie im Programm-Modul EWS erforderlich.

3.5 Temperaturen im Sondenfluid bei Doppel-U-Sonden

Die Temperatur des hinunterfliessenden Sondenfluids $T_{down}(z)$ erhält man durch das Einsetzen von Gl. 3.39 in Gl. 10.18

$$T_{down}(z) = T_{mo} + \Delta T_{Grad} \cdot \frac{H}{2} - \left| \frac{g(t,H)}{2\pi \lambda_{Earth}} + R_{b} + \frac{1}{R_{a}} \cdot \frac{\frac{H^{2}}{3} - z \cdot H + \frac{z^{2}}{2}}{\dot{m}^{2} \cdot cp_{Sole}^{2}} + \frac{H - z}{2 \cdot \dot{m} \cdot cp_{Sole}} \right| \dot{q}$$
Gl. 3.40

Analog erhält man die Temperatur des hinaufströmenden Sondenfluids $T_{up}(z)$ durch das Einsetzen von Gl. 3.39 in Gl. 10.19

$$T_{up}(z) = T_{mo} + \Delta T_{Grad} \cdot \frac{H}{2} - \left| \frac{g(t,H)}{2\pi \lambda_{Earth}} + R_{b} + \frac{1}{R_{a}} \cdot \frac{\frac{H^{2}}{3} - z \cdot H + \frac{z^{2}}{2}}{\dot{m}^{2} \cdot cp_{Sole}^{2}} - \frac{H - z}{2 \cdot \dot{m} \cdot cp_{Sole}} \right| \dot{q}$$
Gl. 3.41

Mit diesen Beziehungen kann nun die Fluidtemperatur über die ganze Bohrtiefe berechnet und dargestellt werden. Als Einschränkung muss beachtet werden, dass Gl. 3.40 und Gl. 3.41 streng genommen nur für einen konstanten Wärmeentzug gilt (cf. Kapitel 10.5.1). Der daraus resultierende Fehler für tiefe Erdwärmesonden kann mit Abb. 10.12 abgeschätzt werden und beträgt für das Beispiel in Abb. 5.1 ca. 10% für Rb* (cf. Gl. 3.26).

Abb. 3.8 Fluidtemperaturen in einer 600m tiefen, homogenen Doppel-U-Sonde 50 mm mit einem Sondendurchsatz von 0.8 kg/s Wasser bei einer Entzugsleistung von 5 kW nach 30 Tagen Dauerbetrieb (Sprungantwort). Wärmeleitfähigkeit der Erde λ_{Earth} = 2.6 W/mK und der Hinterfüllung λ_{Fill} = 1.5 W/mK, Jahresdurchschnittstemperatur der Oberfläche 11°C, Temperaturgradient 3.5°C/100m, Bohrdurchmesser 17.2cm. Ra = 0.154 Km/W, Rb = 0.057 Km/W. Exzentrizität = 0.5.

3.6 Thermische Widerstände Ra / Rb an der Koaxialsonde

Abb. 3.9 Bezeichnungen an der Koaxialsonde

Bezeichnungen an der Koaxialsonde

Eine idealisierte Koaxialsonde ist in Abb. 3.9 dargestellt. Grau dargestellt ist die Bohrung mit dem Bohrradius r_1 .

Die Hinterfüllung besitzt die Wärmeleitfähigkeit λ_{Fill} , das innere Sondenrohr λ_{w} , das äussere Sondenrohr λ_{s} und das Erdreich λ_{Earth} .

 r_i und r_a sind die inneren und äusseren Radien des inneren Sondenrohres, r_o und r_s die inneren und äusseren Radien des äusseren Sondenrohres.

3.6.1 Modellierung des internen Bohrlochwiderstandes R_a

Auch für Koaxialsonden gilt die Definition für den internen Bohrlochwiderstand R_a nach Gl. 3.22. Der thermische Widerstand R_a ist somit die Summe aus dem Wärmeübergangswiderstand vom hinaufströmende Fluid ans Innenrohr, dem thermischen Widerstand des Innenrohrs und dem Wärmeübergangswiderstand vom Innenrohr ans hinabströmenden Fluid:

$$\mathbf{R}_{a} = \left[\frac{1}{2 \cdot \pi \cdot \mathbf{r}_{i} \cdot \alpha_{i}} + \frac{1}{2 \cdot \pi \cdot \lambda_{w}} \cdot \ln\left(\frac{\mathbf{r}_{a}}{\mathbf{r}_{i}}\right) + \frac{1}{2 \cdot \pi \cdot \mathbf{r}_{a} \cdot \alpha_{a}}\right]$$
Gl. 3.42

3.6.2 Modellierung des Bohrlochwiderstandes R_b

Bei der Koaxialsonde ist R_b definiert als der thermische Widerstand des äusseren Sondenfluids (in der Regel das hinabströmende Fluid) bis an die Wand des Bohrlochs (beim Radius r_1):

$$\mathbf{R}_{\mathrm{b}} = \left[\frac{1}{2 \cdot \pi \cdot \mathbf{r}_{\mathrm{o}} \cdot \boldsymbol{\alpha}_{\mathrm{o}}} + \frac{1}{2 \cdot \pi \cdot \boldsymbol{\lambda}_{\mathrm{s}}} \cdot \ln\left(\frac{\mathbf{r}_{\mathrm{s}}}{\mathbf{r}_{\mathrm{o}}}\right) + \frac{1}{2 \cdot \pi \cdot \boldsymbol{\lambda}_{\mathrm{Fill}}} \cdot \ln\left(\frac{\mathbf{r}_{\mathrm{l}}}{\mathbf{r}_{\mathrm{s}}}\right)\right]$$
GI. 3.43

Bei der Dimensionierung der inneren Sondenrohre wird oft empfohlen, die Fliessgeschwindigkeit des hinaufströmenden Fluids höher zu wählen als die des hinunterströmenden Fluids. Das Verhältnis der Fliessgeschwindigkeit vom hinaufströmenden zum hinunterströmenden Fluid kann mit dem Faktor kf beschrieben werden:

Def:
$$kf = \frac{r_o^2 - r_a^2}{r_i^2}$$
 GI. 3.44

Mit der Wandstärke w des inneren Sondenrohres

Def:
$$w = r_a - r_i$$
 GI. 3.45

kann der Innenrohrradius ri auch dargestellt werden als

$$\mathbf{r}_{i} = -\frac{1}{\mathbf{k}f + 1} \cdot \mathbf{w} + \sqrt{\left(\frac{1}{\mathbf{k}f + 1} \cdot \mathbf{w}\right)^{2} - \frac{1}{\mathbf{k}f + 1} \cdot \left(\mathbf{w}^{2} - \mathbf{r}_{0}^{2}\right)}$$
Gl. 3.46

3.6.3 Erreichbare Werte für die thermischen Widerstände Ra und Rb

Wie Abb. 3.10 zeigt, stimmt die Empfehlung für ein grosses kf nicht generell, da bei grösseren Fliessgeschwindigkeiten auch der Wärmeübergangswidertand α vom Fluid an die Wand grösser wird. Solange beide Strömungen im turbulenten Bereich sind, ist der Einfluss von kf auf Ra und Rb eher gering. Um einen minimalen Druckabfall zu erreichen, scheint hier ein kf von 1 am besten zu sein.

Abb. 3.10 Ra und Rb in Funktion des Fliessgeschwindigkeitsverhältnis kf für Koaxialsonden

4 Erweiterungen im Programm-Modul EWS

Im folgenden Abschnitt sollen die Ergänzungen im Programm – Modul EWS (Huber, Schuler 1997) beschrieben werden. Neu wurden die Modelle für die Koaxialsonde (Kapitel 4.5 und Anhang 10.2.5) eingefügt. Dem besseren Verständnis wegen wird das Rechenverfahren und die Berechnung der Doppel-U-Sonden nochmals kurz aufgeführt.

4.1 Rechengitter

Die Berechnungen werden in einem axialsymmetrischen Rechengitter gemäss Abb. 4.1 durchgeführt. In axialer Richtung wird die Erde in gleiche Teile der Länge dl aufgeteilt.

Das Rechengitter in radialer Richtung ist variabel. Es wird durch den Gitterfaktor f definiert:

Gitterfaktor
$$f = \frac{r_{j+1} - r_j}{r_j - r_{j-1}}$$
 Gl. 4.1

Bei Vorgabe des Simulationsgebietes mit dem grössten Rechenradius r_m kann das Gitter wie folgt berechnet werden, wobei m die Anzahl Rechenknoten in radialer Richtung darstellt:

Abb. 4.1 Rechengitter der Sonde

$$r_0 = \frac{D_i}{2}$$
 GI. 4.2

$$r_1 = \frac{D_b}{2} = \frac{Bohrdurchmesser}{2}$$
Gl. 4.3

$$f \ddot{u}r \quad j \ge 2: \quad r_j = r_{j-1} + (r_m - r_1) \frac{1 - f}{1 - f^{m-1}} f^{j-2}$$
 GI. 4.4

Ein Gitterfaktor von 2 verdoppelt jeweils die Radius-Differenz zwischen zwei Rechenvolumen.

Der für die Bestimmung der thermischen Widerstände wichtige "Massenschwerpunkt" kann wie folgt berechnet werden:

Def:
$$rz_j = \sqrt{\frac{(r_j^2 + r_{j-1}^2)}{2}}$$
 GI. 4.5

Abb. 4.2 Rechengitter der Sonde

4.2 Thermische Widerstände R und Leitfähigkeiten L

Der thermische Widerstand R ist der Kehrwert der thermischen Leitfähigkeit L:

Def:
$$L = \frac{1}{R} = \frac{\dot{Q}}{\Delta T}$$
 Gl. 4.6

Um den thermischen Widerstand an einem Zylinder in radialer Richtung zu berechnen, müssen wir zunächst die Temperaturdifferenz in Funktion des Radius bestimmen. Da der Wärmefluss \dot{Q} zwischen zwei Masseknoten konstant ist, gilt

$$\dot{q} = \frac{dT}{dr} \cdot \lambda = \frac{\dot{Q}}{2 \cdot \pi \cdot r \cdot dl}$$
 GI. 4.7

Durch Integration zwischen dem Radius r_1 und r_2 lässt sich daraus der Temperaturabfall zwischen zwei Masseknoten berechnen als

$$\Delta T = \int_{r_1}^{r_2} \frac{\dot{Q}}{2 \cdot \pi \cdot r \cdot dl \cdot \lambda} dr = \frac{\dot{Q}}{2 \cdot \pi \cdot r \cdot dl} \cdot \ln \frac{r_2}{r_1}$$
Gl. 4.8

Die thermische Leitfähigkeit zwischen dem Radius ri und ri+1 beträgt somit

$$L = \frac{1}{R} = \frac{2 \cdot \pi \cdot dl \cdot \lambda}{\ln \frac{r_{i+1}}{r_i}}$$
Gl. 4.9

Der thermische Widerstand $R_1 = 1/L_1$ ist definiert als der Widerstand zwischen dem ersten Massenknoten auf dem Radius rz₁ in der Hinterfüllung und dem Sondenfluid:

Def:
$$L_1 = \frac{1}{R_1} = \frac{\dot{Q}}{T_f - T_1}$$
 GI. 4.10

Bei Doppel-U-Sonden ist für die mittlere Temperatur im Sondenfluid

$$T_f = 0.5 \cdot \left(T_{up} + T_{down}\right) \qquad \qquad \text{U-Sonden} \qquad \qquad \text{GI. 4.11}$$

einzusetzen, bei Koaxialsonden ist die Fluidtemperatur im äusseren Sondenrohr einzusetzen, was in aller Regel das hinunterfliessende Sondenfluid ist:

$$T_f = T_{down}$$
 Koaxial - Sonden GI. 4.12

Für die folgenden Widerstände ergibt dies

$$R_{2} = \frac{1}{L_{2}} = \frac{1}{2\pi dl} \left(\frac{1}{\lambda_{\text{Fill}}} \ln \frac{r_{1}}{rz_{1}} + \frac{1}{\lambda_{\text{Erde}}} \ln \frac{rz_{2}}{r_{1}} \right)$$
GI. 4.13

$$R_{3} = \frac{1}{L_{3}} = \frac{1}{2\pi dl} \frac{1}{\lambda_{\text{Erde}}} \ln \frac{rz_{3}}{rz_{2}}$$
GI. 4.14

Analog zu den thermischen Leitfähigkeiten in der Erde kann auch in der Sole die Leitfähigkeit L_0 definiert werden als

Def:
$$L_0 = \frac{1}{R_0} = \frac{Q_{Ein} - Q_{Aus}}{T_{Ein} - T_{Aus}} = c p_{Sole} \cdot \dot{m}$$
 GI. 4.15

4.3 Wärmeübergangskoeffizient α beim Betrieb der Erdwärmesonde

Der Wärmeübergangskoeffizient α vom Fluid an die Sondenrohre ist eine Funktion der mit dem Rohrdurchmesser D_i gebildeten Reynoldszahl Re und der Prandtlzahl der Sole. Der Wärmeübergangskoeffizient wird üblicherweise dimensionslos mit der Nusseltzahl Nu für die ausgebildete Rohrströmung angegeben:

Nu(Re, Pr) =
$$\frac{\alpha \cdot D_i}{\lambda_{Sole}}$$
 GI. 4.16

wobei

$$Re = \frac{v \cdot D_i}{v_{Sole}}$$
Gl. 4.17

$$\Pr = \frac{v_{Sole} \ \rho_{Sole} \ cp_{Sole}}{\lambda_{Sole}}$$
Gl. 4.18

Je nach Reynoldszahl befinden wir uns im laminaren Bereich (Re < 2 10^3), dem Übergangsbereich laminar-turbulent (2 10^3 < Re < 10^4) oder im turbulenten Bereich (Re > 10^4). Nach Merker (1987) kann im turbulenten Bereich 10^4 < Re < 5 10^6 und für alle Fluide mit einer Prandtlzahl von 0.5 < Pr < 2 10^3 die Petukhov - Formel angewendet werden:

ء

$$Nu_{turb} = \frac{\frac{\xi}{8}}{K_1 + K_2 \sqrt{\frac{\xi}{8}} (\Pr^{2/3} - 1)} \quad \text{Re Pr}$$
 GI. 4.19

mit

$$K_1 = 1 + 27.2 \left(\frac{\xi}{8}\right)$$
 GI. 4.20

$$K_2 = 11.7 + 1.8 \text{ Pr}^{-1/3}$$
 Gl. 4.21

$$\xi = \frac{1}{(1.82 \log \text{Re} - 1.64)^2}$$
 Gl. 4.22

Für Reynoldszahlen Re < 2'300 liegen wir immer im laminaren Bereich, für den Merker (1987) die folgende Nusseltzahl angibt:

$$Nu_{lam} = 4.36$$
 GI. 4.23

Zwischen dem laminaren und dem turbulenten Bereich liegt ein Übergangsbereich (2'300 < Re < 10'000). In diesem Bereich wurde ein stetiger Ansatz für die Nusseltzahl gewählt, der analog zum turbulenten Bereich von einer exponentiellen Zunahme der Nusseltzahl mit der Reynoldszahl ausgeht (cf. Abb. 4.3 und Huber, Schuler, 1997):

für die

GI. 4.24

Abb. 4.3 Mittlere Nusseltzahl für die Rohrströmung in Abhängigkeit der Reynoldszahl Re

4.4 Modell für Doppel – U- Sonden

Tdown(i+1) $v = \frac{\dot{m}}{2 \cdot \pi \cdot r_0^2 \cdot \rho_{Sole}}$

ist der Rechengang

Modellierung der Sole in der Doppel-U-Sonde

kurz dargestellt. Für die folgenden Betrachtungen

werden die beiden Sondenrohre zusammengefasst, in denen das Sondenfluid nach unten

und diejenigen, bei denen sie hinaufströmt. Dabei

gilt für die Strömungsgeschwindigkeit v

Nachfolgend

Abb. 4.4 Schematische Darstellung der U-Sonde

Analog zu den thermischen Leitfähigkeiten in der Erde kann auch in der Sole die Leitfähigkeit L_0 definiert werden:

$$L_0 = \frac{\dot{Q}_{Ein} - \dot{Q}_{Aus}}{T_{Ein} - T_{Aus}} = cp_{Sole} \cdot \dot{m} = 2 \cdot \pi \cdot r_0^2 \cdot v \cdot \rho_{Sole} \cdot cp_{Sole}$$
GI. 4.25

Wir stellen nun die Bilanz für das Sole-Element der Länge dl auf. Das Bilanzelement (bestehend aus den beiden zusammengefassten Sondenstücken der Doppel-U-Sonde) hat somit eine Masse m von

$$m = 2 \pi r_0^2 dl \rho_{Sole}$$
 GI. 4.26

Für den Widerstand R1 gibt es verschiedene Ansätze. Huber und Schuler (1997) haben den folgenden Ansatz aufgestellt:

$$R_{1} = \frac{1}{L_{1}} = \frac{1}{4} \left(\frac{1}{2\pi\alpha r_{0}dl} + \frac{1}{2\pi\lambda_{\text{Fill}}dl} \ln \frac{r_{1} - rz_{1}}{r_{0}} \right)$$
GI. 4.27

dl

Mit den Definitionen Gl. 3.22 und Gl. 3.23 von Hellström (1991) und Gl. 4.27 und Gl. 4.13 lassen sich R₁ und R₂ auch schreiben als

$$R_{1} = \frac{R_{a}}{4 \ dl} \qquad \text{GI. 4.28}$$

$$R_{2} = \frac{(R_{b} - \frac{R_{a}}{4})}{dl} + \frac{1}{2 \ \pi \ dl} \frac{1}{\lambda_{\text{Erde}}} \ln \frac{rz_{2}}{r_{1}} \qquad \text{GI. 4.29}$$

Die Herleitung ist in (Huber, Schuler, 1997) zu finden.

Abb. 4.5 Querschnitt der U-Sonde

Stationäre Berechnung der Sole: 4.4.1

Aus einer Energiebilanz für das Element i ergibt sich im stationären Fall für die hinunterfliessende Sole

$$Tdown_{i} = \frac{\left(L_{0}Tdown_{i-1} + \frac{L_{1}}{2}TEarth_{i,1}\right)}{\left(L_{0} + \frac{L_{1}}{2}\right)}$$
Gl. 4.30

und

$$Tup_{i} = \frac{\left(L_{0}Tup_{i-1} + \frac{L_{1}}{2}TEarth_{1+DimAxi-i,1}\right)}{\left(L_{0} + \frac{L_{1}}{2}\right)}$$
Gl. 4.31

4.4.2 Instationäre Berechnung der Sole:

Für die Modellierung der Sole kann auch ein dynamischer Ansatz gewählt werden. Die Soletemperatur wird dabei mit einem expliziten Zeitschrittverfahren berechnet. Dadurch wird auch eine Erwärmung der Sole beim Stillstand der Solepumpe mitberücksichtigt.

Aus der Energiebilanz für das Bilanzelement i ergibt sich so für die Soletemperatur Tdowni der hinunterfliessenden Sole:

$$Tdown_{k+1,i} = Tdown_{k,i} + \left(Tdown_{k+1,i-1} - Tdown_{k,i}\right) \cdot \frac{L_0 dt2}{mcp} + \left(TEarth_{k,i,1} - Tdown_{k,i}\right) \cdot \frac{L_1 dt2}{2mcp}$$
GI. 4.32

und der hinaufströmenden Sole mit der Soletemperatur Tupi :

$$Tup_{k+1,i} = Tup_{k,i} + \left(Tup_{k+1,i-1} - Tup_{k,i}\right) \cdot \frac{L_0 dt2}{mcp} + \left(TEarth_{k,1+DimAxi-i,1} - Tup_{k,i}\right) \cdot \frac{L_1 dt2}{2mcp}$$
GI. 4.33

4.5 Modell für Koaxial – Sonden

Bei Koaxialsonden ist ein angepasstes Modell für die thermischen Widerstände L_1 und L_a gemäss Abb. 4.6 erforderlich. Für den thermischen Widerstand L_0 gilt gleich wie bei Doppel-U-Sonden:

$$L_0 = \frac{1}{R_0} = cp_{Sole} \cdot \dot{m} \qquad \qquad \text{Gl. 4.34}$$

Abb. 4.6 Schematische Darstellung der Koaxialsonde

Der thermische Widerstand R1 kann nach der Definition GI. 4.10 und GI. 4.12 berechnet werden mit

$$R_{1} = \frac{1}{L_{1}} = \left(\frac{1}{2 \cdot \pi \cdot \alpha \cdot r_{0} \cdot dl} + \frac{1}{2 \cdot \pi \cdot \lambda_{s} \cdot dl} \cdot \ln \frac{r_{s}}{r_{0}} + \frac{1}{2 \cdot \pi \cdot \lambda_{\text{Fill}} \cdot dl} \cdot \ln \frac{r_{1} - rz_{1}}{r_{s}}\right)$$
GI. 4.35

In der Schreibweise mit Rb ist dies

$$R_1 = \frac{1}{L_1} = \frac{R_b}{dl} - \frac{1}{2 \cdot \pi \cdot dl} \cdot \left(\frac{1}{\lambda_{\text{Fill}}} \cdot \ln \frac{r_1}{rz_1}\right)$$
GI. 4.36

Der Widerstand zwischen den beiden Sondenrohren kann berechnet werden mit

$$\frac{1}{L_a} = \frac{R_a}{dl} = \left(\frac{1}{2 \cdot \pi \cdot \alpha_i \cdot r_i \cdot dl} + \frac{1}{2 \cdot \pi \cdot \lambda_w \cdot dl} \cdot \ln \frac{r_a}{r_i} + \frac{1}{2 \cdot \pi \cdot \alpha_a \cdot r_a \cdot dl}\right)$$
GI. 4.37

4.5.1 Stationäre Berechnung der Sole

Für die stationäre Berechnung von Koaxialen Sonden wurde im Programm-Modul EWS das folgende Modell eingebaut (Quellcode im Anhang):

$$Tdown_{i} = \frac{(L_{0} \cdot Tdown_{i-1} + L_{1} \cdot TEarth_{i,1} + L_{a} \cdot Tup_{1+DimAxi-i})}{(L_{0} + L_{1} + L_{a})}$$
Gl. 4.38

und

$$Tup_{i} = \frac{\left(L_{0} \cdot Tup_{i-1} + L_{a} \cdot Tdown_{1+DimAxi-i}\right)}{\left(L_{0} + L_{a}\right)}$$
Gl. 4.39

4.5.2 Instationäre Berechnung der Sole:

Für die Instationäre Berechnung von Koaxialen Sonden wurde im Programm-Modul EWS das folgende Modell eingebaut (Quellcode im Anhang):

$$Tdown_{k+1,i} = Tdown_{k,i} + (Tdown_{k+1,i-1} - Tdown_{k,i})\frac{L_0dt2}{m\,cp} + (TEarth_{k,i,1} - Tdown_{k,i})\frac{L_1dt2}{m\,cp} + (Tup_{k,i} - Tdown_{k,i})\frac{L_adt2}{m\,cp}$$
Gl. 4.40

und

$$Tup_{k+1,i} = Tup_{k,i} + (Tup_{k+1,i-1} - Tup_{k,i}) \frac{L_0 dt 2}{m cp} - (Tup_{k,i} - Tdown_{k,1+DimAxi-i}) \frac{L_a dt 2}{m cp}$$
GI. 4.41

5 Rechenresultate

5.1 Erreichbare Werte an der homogenen Doppel-U-Sonde

5.1.1 Erreichbare Temperaturen, berechnete mit der Erdwärmesondengleichung

Die nachfolgenden Grafiken zeigen die erreichbare Quellentemperaturen bei einer homogenen Erdwärmesonde mit 500m und 600m Bohrtiefe nach 31 Tagen Dauerbetrieb bei 5kW Entzugsleistung, einer Wärmeleitfähigkeit der Erde von 2.6W/mK und der Hinterfüllung von 0.81 W/mK, einer mittleren Oberflächentemperatur von 11°C bei einem Gradienten von 0.035K/m und einem Durchsatz von 0.8kg/s, berechnet mit den Gleichungen Gl. 3.37 und Gl. 3.10.

Abb. 5.1 Einfluss von Ra und Rb auf die Quellentemperatur der Sonde am Beispiel einer 500m tiefen Doppel-U-Sonde 50 mm mit einem Sondendurchsatz von 0.8 kg/s Wasser bei einer Entzugsleistung von 5 kW und 31 Tagen Dauerbetrieb (Sprungantwort). Wärmeleitfähigkeit der Erde λ_{Earth} = 2.6 W/mK, Jahresdurchschnittstemperatur der Oberfläche 11°C, Temperaturgradient 3.5°C/100m, Bohrdurchmesser 15cm.

Abb. 5.2 Einfluss von Ra und Rb auf die Quellentemperatur der Sonde am Beispiel einer 600m tiefen Doppel-U-Sonde 50 mm mit einem Sondendurchsatz von 0.8 kg/s Wasser bei einer Entzugsleistung von 5 kW und 31 Tagen Dauerbetrieb (Sprungantwort). Wärmeleitfähigkeit der Erde λ_{Earth} = 2.6 W/mK, Jahresdurchschnittstemperatur der Oberfläche 11°C, Temperaturgradient 3.5°C/100m, Bohrdurchmesser 15cm.

5.1.2 Erreichbare Rücklauftemperaturen, berechnete mit der Erdsondengleichung

Die nachfolgenden Grafiken zeigen die erreichbare Rücklauftemperatur bei einer homogenen Erdwärmesonde mit 500m und 600m Bohrtiefe nach 31 Tagen Dauerbetrieb bei 5kW Entzugsleistung, einer Wärmeleitfähigkeit der Erde von 2.6W/mK und der Hinterfüllung von 0.81 W/mK, einer mittleren Oberflächentemperatur von 11°C bei einem Gradienten von 0.035K/m und einem Durchsatz von 0.8kg/s, berechnet mit den Gleichungen Gl. 3.37 und Gl. 3.10.

Abb. 5.4 Einfluss von Ra und Rb auf die Quellentemperatur der Sonde am Beispiel einer 600m tiefen Doppel-U-Sonde 50 mm mit einem Sondendurchsatz von 0.8 kg/s Wasser bei einer Entzugsleistung von 5 kW und 31 Tagen Dauerbetrieb (Sprungantwort). Wärmeleitfähigkeit der Erde λ_{Earth} = 2.6 W/mK, Jahresdurchschnittstemperatur der Oberfläche 11°C, Temperaturgradient 3.5°C/100m, Bohrdurchmesser 15cm.

5.1.3 Erreichbare Temperaturen, berechnete mit dem EWS-Modul (10 Schichten)

Die nachfolgenden Grafiken zeigen die erreichbare Quellentemperaturen bei einer homogenen Erdwärmesonde mit 500m und 600m Bohrtiefe nach 31 Tagen Dauerbetrieb mit 5kW Entzugsleistung, einer Wärmeleitfähigkeit der Erde von 2.6W/mK und der Hinterfüllung von 0.81 W/mK, einer mittleren Oberflächentemperatur von 11°C bei einem Gradienten von 0.035K/m und einem Durchsatz von 0.8kg/s, berechnet mit dem EWS-Modul mit 10 Schichten.

Abb. 5.6Einfluss von Ra und Rb auf die Quellentemperatur der Sonde am Beispiel einer 600m tiefen Doppel-U-
Sonde 50 mm mit einem Sondendurchsatz von 0.8 kg/s Wasser bei einer Entzugsleistung von 5 kW und
31 Tagen Dauerbetrieb (Sprungantwort). Wärmeleitfähigkeit der Erde λ_{Earth} = 2.6 W/mK, Jahresdurch-
schnittstemperatur der Oberfläche 11°C, Temperaturgradient 3.5°C/100m, Bohrdurchmesser 15cm.

5.1.4 Erreichbare Rücklauftemperaturen, berechnete mit dem EWS-Modul

Die nachfolgenden Grafiken zeigen die erreichbare Rücklauftemperatur bei einer homogenen Erdwärmesonde mit 500m und 600m Bohrtiefe nach 31 Tagen Dauerbetrieb mit 5kW Entzugsleistung, einer Wärmeleitfähigkeit der Erde von 2.6W/mK und der Hinterfüllung von 0.81 W/mK, einer mittleren Oberflächentemperatur von 11°C bei einem Gradienten von 0.035K/m und einem Durchsatz von 0.8kg/s, berechnet mit dem EWS-Modul mit 10 Schichten.

5.1.5 Wärmeleitfähigkeiten der Hinterfüllung λ_{Fill}

In Abb. 3.7 wurde gezeigt, welche thermischen Widerstände im Bohrloch bei unterschiedlichen Hinterfüllungs-Wärmeleitfähigkeiten λ_{Fill} von 0.4 W/mK bis 1.5 W/mK erreichbar sind. Es stellt sich nun die Frage, welche Werte heute maximal in der Praxis erreichbar sind und welche Quellentemperaturen bei tiefen Erdwärmesonden damit erreichbar sind.

Die Firma STÜWA Konrad Stükerjürgen GmbH in D-33397 Rietberg – Varensell bietet eine Hinterfüllung unter dem Handelsnamen "Stüwatherm" an, die eine Wärmeleitfähigkeit von 2.0 W/mK hat. Erreicht wird dieser Wert durch die Zugabe von gesiebtem Quarz-Korn mit Korngrössen unter 1 mm und 25 – 30% Tonanteil (bezogen auf die Trockensubstanz). Diese Mischung wird mit Zement und Wasser zu einer Suspension gemischt und wie die herkömmlichen Zement – Bentonitmischungen angewendet.

5.1.6 Rechenergebnisse mit Programm EWS in homogenen Doppel – U - Sonden

Abb. 5.9 zeigt die erreichbaren Quellen- und Rücklauftemperaturen in einer 600m tiefen, homogenen Erdwärmesonde mit einer gut wärmeleitenden Hinterfüllung mit λ_{Fill} =1.5 W/mK und einer schlecht wärmeleitenden Hinterfüllung λ_{Fill} =0.4 W/mK. Die Resultate sind fast deckungsgleich, die Hinterfüllung scheint bei tiefen Erdwärmesonden für hohe Rücklauftemperaturen zweitrangig zu sein. Eher erstaunlich auch das Resultat, dass der Einfluss der Exzentrizität auch nur gering ist.

Abb. 5.9 Quellentemperaturen und Rücklauftemperaturen in Funktion der Exzentrizität b für homogene Doppel-U-Sonde von 600m Tiefe. Der Sondendurchsatz beträgt 0.8 kg/s Wasser bei einer Entzugsleistung von 5 kW und 31 Tagen Dauerbetrieb (Sprungantwort). Wärmeleitfähigkeit der Erde λ_{Earth} = 2.6 W/mK, Jahresdurchschnittstemperatur der Oberfläche 11°C, Temperaturgradient 3.5°C/100m, Bohrdurchmesser 15cm.

5.1.7 Asymmetrische Sondenrohr-Anordnung

Abb. 5.10 Anordnung der Sondenrohre in der Bohrung: Links Anordnung mit grosser Exzentrizität (Modell A), rechts mit kleiner Exzentrizität (Modell B) [Signorelli, 2004]

In Kapitel 3.3.3 und Kapitel 5.1 wurde untersucht, wie sich die Exzentrizität auf die erreichbaren Quellentemperaturen auswirkt. Dabei wurde entsprechend Abb. 5.10 von einer symmetrischen Anordnung der Sondenrohre in der Bohrung ausgegangen.

In der Realität liegen die Sondenrohre allerdings meist asymmetrisch in der Bohrung (cf. Abb. 5.11). Signorelli hat untersucht, wie sich diese Asymmetrie auf die Quellentemperatur auswirkt. In dieser Arbeit konnte gezeigt werden, dass die Quellentemperaturen bei asymmetrischer Anordnung zwischen den beiden Extremen aus Abb. 5.10 liegen.

Abb. 5.11 Asymmetrische Anordnung (Modell C) [Signorelli, 2004]

Abb. 5.12 zeigt den Vergleich der Quellentemperatur bei symmetrischer Anordnung mit grosser Exzentrizität (Modell A), bei symmetrischer Anordnung mit kleiner Exzentrizität (Modell B) und bei asymmetrischer Anordnung der Sondenrohre in der Bohrung (Modell C). Auch bei längerer Simulation liegt die asymmetrische Anordnung immer zwischen den Extrema der Modelle A und B.

Abb. 5.12 Vergleich Quellentemperaturen [Signorelli, 2004]

5.2 Inhomogene Doppel-U-Sonden

5.2.1 Inhomogene Hinterfüllung

In diesem Abschnitt soll untersucht werden, wie stark eine unterschiedliche Hinterfüllung die Quellentemperatur bei einer 600m tiefen Doppel-U-Sonde erhöhen kann. Dazu soll die Hinterfüllung in den ersten 300m mit einem schlecht leitenden Material mit Wärmeleitfähigkeit $\lambda_{Fill} = 0.4$ W/mK und der untere Teil mit einem gut leitenden Material mit Wärmeleitfähigkeit $\lambda_{Fill} = 1.5$ W/mK gefüllt werden. Verglichen werden soll diese inhomogen hinterfüllte Sonde mit 2 homogen hinterfüllten Sonden mit einer Wärmeleitfähigkeit von $\lambda_{Fill} = 0.4$ W/mK und von $\lambda_{Fill} = 1.5$ W/mK. Die Berechnung wird durchgeführt mit dem EWS-Modul mit 10 Schichten bei einer Sprungantwort von 31 Tagen mit einer Entzugsleistung von 5 kW, einer Wärmeleitfähigkeit des Bodens von 2.6 W/mK, einer mittleren Bodenoberflächentemperatur von 11°C und einem Temperaturgradienten von 0.035 K/m.

Abb. 5.13 Einfluss der Exzentrizität b auf die Quellen- und Rücklauftemperatur der Sonde am Beispiel einer 600m tiefen Doppel-U-Sonde 50 mm mit einem Sondendurchsatz von 0.8 kg/s Wasser bei einer Entzugsleistung von 5 kW und 31 Tagen Dauerbetrieb (Sprungantwort). Wärmeleitfähigkeit der Erde $\lambda_{Earth} = 2.6 W/mK$, Jahresdurchschnittstemperatur der Oberfläche 11°C, Temperaturgradient 3.5°C/100m, Bohrdurchmesser 15cm.

Die Berechnung zeigt, dass die mögliche Temperaturerhöhung weniger als 1°C beträgt, verglichen mit den homogenen Referenzsonden.

Als weiter Verbesserungsmöglichkeit wäre als Hinterfüllung oben Schaumzement mit einer Wärmeleitfähigkeit von 0.16 W/mK und einer Dichte von 360 kg/m3 denkbar, unten ist eine Hinterfüllung mit Quarzsand mit einer Wärmeleitfähigkeit von 2.0 W/mK einsetzbar. Damit lässt sich die Quellentemperatur (=Fluidtemperatur am Sondenaustritt) nochmals um knapp 1°C erhöhen. Doch auch diese Massnahme reicht immer noch nicht aus, um mit einer 600m tiefen Doppel-U-Sonde ein Wohngebäude direkt zu beheizen (cf. Abb. 5.14). Auffallend auch hier wieder der sehr geringe Einfluss der Exzentrizität. Auch mit einer unterschiedlichen Exzentrizität oben und unten kann das Resultat nur marginal beeinflusst werden.

Abb. 5.14 Quellen- und Rücklauftemperatur des Sondenfluids einer 600m tiefen Doppel-U-Sonde 50 mm mit einer Schaumzementhinterfüllung mit λ_{Fill} = 0.16 W/mK in den ersten 420m und mit einer Quarzsandhinterfüllung mit λ_{Fill} = 2.0 W/mK bis auf 600m Tiefe. Sondendurchsatz 0.8 kg/s, Entzugsleistung 5 kW und 31 Tagen Dauerbetrieb (Sprungantwort). Wärmeleitfähigkeit der Erde λ_{Earth} = 2.6 W/mK, Jahresdurchschnittstemperatur der Oberfläche 11°C, Temperaturgradient 3.5°C/100m, Bohrdurchmesser 17.2cm.

Um mit einer 50mm Doppel-U-Sonde eine Direktheizung eines Wohngebäudes zu ermöglichen sind mindestens 800m Bohrtiefe notwendig (cf Abb. 5.15).

Abb. 5.15 Fluidtemperaturen von inhomogenen Doppel-U-Sonde 50 mm mit einer Schaumzementhinterfüllung mit $\lambda_{Fill} = 0.16$ W/mK in den ersten 70% der Bohrtiefe und mit einer Quarzsandhinterfüllung mit $\lambda_{Fill} = 2.0$ W/mK bis auf 600m Tiefe. Sondendurchsatz 0.8 kg/s, Entzugsleistung 5 kW und 31 Tagen Dauerbetrieb (Sprungantwort). Wärmeleitfähigkeit der Erde $\lambda_{Earth} = 2.6$ W/mK, Jahresdurchschnittstemperatur der Oberfläche 11°C, Temperaturgradient 3.5°C/100m, Bohrdurchmesser 17.2cm.

5.2.2 Einfluss der Entzugsleistung

In den bisherigen Berechnungen wurde stets das Beispiel einer Sonde mit 5 kW Entzugsleistung untersucht. Bei einer 600 m tiefen Erdwärmesonde entspricht dies einer Sondenbelastung (bezogen auf die ganze Bohrtiefe) von 8.33 W/m. Dies erscheint auf den ersten Blick sehr wenig. Bedenkt man aber, dass erst in ca. 400m Tiefe die unbeeinflusste Erdreichtemperatur über 25°C liegt, so wird schnell ersichtlich, dass eine tiefe Erdwärmesonde, die Quellen-Temperaturen von deutlich über 20°C fördern soll, nur der unterste Drittel der Sonde überhaupt zum Wärmeentzug aus dem Erdreich beitragen kann. Die restliche Bohrlänge dient einzig dem Transport des Wärmeträgers. Bezieht man die Entzugsleistung also auf die Bohrlänge, die unterhalb 400m Tiefe liegt, so entspricht 5 kW Entzugsleistung einer spezifischen Sondenbelastung von 25 W/m (bezogen auf den untersten Drittel der Bohrung). Dieser Wert liegt nur noch etwa 30% unter dem Wert, der auch bei untiefen Sonden ausgewählt wird, wenn das Sondenfluid ohne Frostschutzmittel betrieben wird.

In Abb. 5.16 wurde das Beispiel in Abb. 5.14 mit einer Exzentrizität von 0.5 mit unterschiedlichen Entzugsleistungen durchgerechnet. Klar ersichtlich wird dabei die starke Abhängigkeit der Quellentemperatur von der Sondenbelastung. Um eine gute Vergleichbarkeit zu erhalten wurde dabei der Sondendurchsatz proportional mit der Entzugsleistung erhöht.

Abb. 5.16 Einfluss der Entzugsleistung auf die Fluidtemperaturen von inhomogenen Doppel-U-Sonde 50 mm mit einer Schaumzementhinterfüllung mit λ_{Fill} = 0.16 W/mK in den ersten 70% der Bohrtiefe und mit einer Quarzsandhinterfüllung mit λ_{Fill} = 2.0 W/mK bis auf 600m Tiefe bei 31 Tagen Dauerbetrieb (Sprungantwort). Wärmeleitfähigkeit der Erde λ_{Earth} = 2.6 W/mK, Jahresdurchschnittstemperatur der Oberfläche 11°C, Temperaturgradient 3.5°C/100m, Bohrdurchmesser 17.2cm, Exzentrizität = 0.5.

5.2.3 Isolierte Sondenrohre

Rohner und Bassetti schlagen vor, bei Doppel-U-Sonden im oberen Bereich die Rücklaufrohre zu isolieren (cf. Abb. 5.17). Ihr Vorschlag bezieht sich auf Sonden mit 127 m Bohrtiefe [Rohner, Bassetti, 2004]. Der Vorschlag ist sicher auch für tiefe Erdwärmesonden prüfenswert.

Abb. 5.17 Vorschlag für eine Isolation der 2 Rücklauf-Sondenrohre im oberen Teil der Erdwärmesonde nach Rohner, Bassetti [2004].

Im weiteren Verlauf der Arbeit soll nun untersucht werden, wie sich die Quellentemperatur durch diese Massnahme bei tiefen Erdwärmesonden erhöhen lässt. Dazu sind die Rechenmodelle wie folgt anzupassen:

Die Wärmedämmung der Sondenrohre erhöht den thermischen Widerstand R_s der Sondenrohr-Wand in Gl. 3.31. Dieser berechnet sich mit der neuen Wärmeleitfähigkeit der Wärmedämmung λ_{isol} als

$$R_{s} = \frac{1}{4 \cdot \pi \cdot \lambda_{s}} \cdot \ln\left(\frac{r_{s}}{r_{o}}\right) + \frac{1}{4 \cdot \pi \cdot \lambda_{isol}} \cdot \ln\left(\frac{r_{s}}{r_{o}}\right)$$
GI. 5.1

Analog ist der dimensionslose thermische Widerstand β vom Sondenrohr bis zum Fluid in Gl. 3.33 anzupassen auf

$$\beta = 2 \cdot \pi \cdot \lambda_{\text{Fill}} \cdot \left[\mathbf{R}_{\alpha} + \frac{1}{2} \cdot \mathbf{R}_{w} + \frac{1}{2} \cdot \mathbf{R}_{\text{isol}} \right] = \lambda_{\text{Fill}} \cdot \left[\frac{1}{\mathbf{r}_{o} \cdot \alpha} + \frac{1}{2 \cdot \lambda_{s}} \cdot \ln\left(\frac{\mathbf{r}_{s}}{\mathbf{r}_{o}}\right) + \frac{1}{2 \cdot \lambda_{\text{isol}}} \cdot \ln\left(\frac{\mathbf{r}_{s}}{\mathbf{r}_{o}}\right) \right] \quad \text{GI. 5.2}$$

In erster Näherung können damit GI. 3.30 und GI. 3.32 weiterverwendet werden, was streng genommen nur gilt, wenn sich die Sondenrohrdurchmesser nicht ändern. Da dies in der Regel aber der Fall ist, soll eine angepasste Wärmeleitfähigkeit λ_{isol} verwendet werden, die sich aus der effektiven Wärmeleitfähigkeit des Isolierten Rohres λ_{isol_eff} und dem effektiven, äusseren Rohrradius r_{isol} wie folgt berechnet:

$$\lambda_{isol} = \lambda_{isol_eff} \cdot \frac{\ln\left(\frac{r_s}{r_o}\right)}{\ln\left(\frac{r_{isol}}{r_o}\right)}$$
GI. 5.3

5.2.4 Instationäres Verhalten (Anfahrverhalten tiefer Erdwärmesonden)

Beim Anfahren einer inhomogenen, tiefen Erdwärmesonde, die in den ersten 400m mit einer schlecht wärmeleitenden Hinterfüllung ausgeführt wird, zeigt sich prinzipiell das gleiche Verhalten wie bei untiefen Erdwärmesonden: Der Kolbeneffekt bewirkt zunächst ein schnelles Ansteigen und anschliessend durch das Entstehen des Temperaturtrichters in den unteren Erdschichten wiederum ein stetiges Abnehmen der Quellentemperatur.

Ähnlich sieht das Bild bei homogenen, tiefen Erdwärmesonden mit einer durchgehenden Hinterfüllung mit Wärmeleitfähigkeit 0.81 W/mK aus. Etwas weniger ausgeprägt, aber immer noch gut sichtbar der Kolbeneffekt, der zu einem sehr schnellen Anstieg der Quellentemperatur führt.

Die Berechnung zeigt deutlich, dass die Sondenpumpe nur bei einem effektiven Wärmebedarf in Betrieb sein sollte und sonst abgestellt werden kann.

5.3 Erreichbare Temperaturen bei Koaxialsonden

Abb. 5.22 und Abb. 5.23 wurden mit dem Programm-Modul EWS berechnet und zeigen, dass bei Koaxialsonden von über 500m Tiefe prinzipiell an eine Direktbeheizung eines Gebäudes mit Erdwärmesonden gedacht werden kann, da die Rücklauftemperaturen dann über 20°C liegen. Generell zeigt sich auch, dass es besser ist, im Innenrohr mit einer kleineren Fliess-geschwindigkeit zu fahren als im Aussenrohr, wenngleich die Abhängigkeit nur gering ist.

Abb. 5.22 Quellentemperaturen und Rücklauftemperaturen in Funktion des Fliessgeschwindigkeitsverhältnis kf für homogene Koaxialsonden von 500m Tiefe

Abb. 5.23 Quellentemperaturen und Rücklauftemperaturen in Funktion des Fliessgeschwindigkeitsverhältnis kf für homogene Koaxialsonden von 600m Tiefe

Abb. 5.24 zeigt die Temperaturverteilung im Sonden – Nahbereich der Berechnung mit dem Programm-Modul EWS aus Abb. 5.23. für einen Sondendurchsatz von 0.8 kg/s. Dargestellt ist das Erdreich in einem Radius von 2m um die 600 m tiefe Koaxialsonde mit kf = 1 am Ende einer 31-tägigen Dauerentzugsperiode von 5 kW. Das Erdreich wurde in 10 Schichten à 60m mit einer Wärmeleitfähigkeit von λ_{Earth} = 2.6 W/mK aufgeteilt.

Abb. 5.24 Temperaturverteilung im Erdreich mit $\lambda_{Erde} = 2.6$ W/mK um eine 600m tiefe Koaxialsonde mit Bohrradius 15 cm, äusserem Sondenrohr von 11cm und kf = 1. Sondendurchsatz = 0.8 kg/s, Wärmeentzug 5kW nach 31 Tagen Dauerentzug. Oberflächentemperatur $T_{mo} = 11^{\circ}$ C mit einem Temperaturgradienten $\Delta T_{Grad} = 0.035$ K/m. Die Berechnung wurde durchgeführt mit dem Programm EWS.

Abb. 5.24 zeigt deutlich, dass der Wärmeentzug aus dem Erdreich primär im untersten Drittel der Sonde stattfindet und im obersten Drittel ist ein Wärmeabfluss von der Sonde ins umgebende Erdreich sichtbar. Dadurch erwärmt sich die Erde oben um die Sonde und verringert so die Wärmeverluste in der oberen Sondenhälfte auch ohne eine zusätzliche Isolation der Sonde. Dies ist auch der Grund, warum bei tiefen Erdwärmesonden ein Dauerentzug von geringerer Leistung einem intermittierenden Betrieb von höherer Leistung vorzuziehen ist.

6 Machbarkeit und Bohrschema

6.1 Koaxialsonden

Aus Abb. 5.13 wird ersichtlich, dass mit Koaxialsonden mit 600m Bohrtiefe prinzipiell genügend hohe Quellentemperaturen für eine Direktheizung erreichbar sind. Dies setzt aber voraus, dass die Erdwärmesonde zumindest im unteren Teil gut ans Erdreich angebundenen sein muss.

Und hier liegt die Grundproblematik dieser Technik: Tiefe Koaxialsonden sind heute nur herstellbar mit Metall-Verrohrungen (cf. Bohrschema Abb. 6.1), bei denen das Problem der Hinterfüllung zur Zeit nur schwer zu lösen ist. Das Fehlen dieser Hinterfüllung führt zu grossen, thermischen Kontaktwiderständen, wodurch nur relativ bescheidene Quellentemperaturen realisierbar sind (cf. Messung Erdwärmesonde Weissbad in Abb. 6.2). Vergleichsrechnungen von Maraini (2000) haben gezeigt, dass ohne diese thermischen Kontaktwiderstände 7° – 10°C höhere Quellentemperaturen erreichbar wären. (Zu beachten ist dabei die höhere, spezifische Entzugsleistung von durchschnittlich 34 W/m für die Sonde Weissbad im Vergleich zur Berechnung in Abb. 5.13 mit 8.3 W/m).

Abb. 6.1 Bohrschema der geschlossenen Koaxialsonde der Bohrung Weissbad (Kohl, Salton, Rybach, 2000)

Abb. 6.2 Gemessene Quellentemperaturen der geschlossenen Koaxialsonde Weissbad, Bohrtiefe 1213m (Kohl, Salton, Rybach, 2000)

Um eine bessere Ankopplung der Erde an die Sonde zu erreichen sind somit ein oder mehrere Injektionsrohre einzubringen oder es wird durch die Sonde über ein Zementationsschuh eine Hinterfüllung eingebracht. Dies ist aber nur mit den entsprechenden, bedeutenden Kosten realisierbar.

6.2 Doppel-U-Sonden

Mit 600 m tiefen, homogenen Doppel-U-Sonden sind im optimalen Fall Quellentemperaturen (Temperatur am Sondenaustritt) von ca. 19°C erreichbar (Abb. 5.9). Bei einer inhomogenen Hinterfüllung (oben schlecht, unten gut wärmeleitend) kann dieser Wert um maximal 2 °C gehoben werden (Abb. 5.13). Diese Temperatur reicht in der Regel nicht aus für eine direkte Beheizung eines Gebäudes.

Abb. 6.3 Querschnitt durch 50 mm Duplex-Sonde Machbarkeitsstudie Haka Gerodur AG

Die prinzipielle Machbarkeit von 600 m tiefen Doppel-U-Sonden wurde von der Firma Haka Gerodur AG untersucht. Für so tiefe Sonden sind Sondenrohre mit 50mm Nenndurchmesser erforderlich, damit der Druckverlust in der Sonde nicht zu hoch wird. Die Hinterfüllung kann dabei in 3 Hinterfüllungsrohren eingebracht werden. Damit ist eine unterschiedliche Hinterfüllung über die Bohrtiefe möglich (gut Wärmeleitend unten, schlecht leitend oben). Die Sonde müsste voraussichtlich in mehreren Teilen auf die Bohrstelle gebracht werden.

6.2.1 Bohr- und Verrohrungsschema für 600m tiefe Duplex-Sonde 50 mm

Im optimalen Fall kann mit einem 6 ³/₄" PDC-Meissel in der Molasse bis auf 1'200 Meter Tiefe gebohrt werden. Dies setzt aber voraus, dass über die Bohrtiefe kein Konglomerat vorhanden ist, das Bohrloch standfest ist und

nur unbedeutende Wasserdurchbrüche vorhanden sind. Ist dies nicht der Fall, so muss auf das Rotary-Bohrverfahren mit XC-Polymerspülung gewechselt werden. In der oberen Hälfte wäre eine temporäre 8 $^{5/8}$ " – Verrohrung nötig, was eine 9 $^{5/8}$ " – Bohrung erforderlich macht. Für das sichere Einbringung der Sonde ist im unteren Teil eine 7 $\frac{3}{4}$ " Bohrung erforderlich. Um die Gefahr eines einstürzenden Bohrlochs zu minimieren ist eine 24–Stunden-Bohrbewilligung einzuholen.

Abb. 6.4 Vorschlag Hr. Berli (Foralith AG) für Bohr- und Verrohrungsschema für eine 600m tiefe, 50mm Doppel-U-Sonde bei unbekannten Bohrverhältnissen.

7 Wirtschaftlichkeit

Würde man heute zu einem Bohrunternehmen gehen und eine Offerte für die Erstellung einer Erdwärmesonde auf eine Tiefe von 600m gemäss dem Bohrschema in Abb. 6.4 (inklusive Lieferung und Einbringung einer 50mm Doppel-U-Sonde) offerieren lassen, so müsste man mit Kosten von rund 670'000 Fr. rechnen. Eine Wirtschaftlichkeitsbetrachtung dazu erübrigt sich.

Im folgenden soll deshalb nur der Idealfall eines Bohruntergrundes im Molassebecken ohne Konglomeratvorkommen, ohne bedeutende Wasserdurchbrüche und mit standfestem Bohrloch wirtschaftlich untersicht und mit einer konventionellen Wärmepumpenlösung mit Erdwärmesonde verglichen werden.

7.1 Randbedingungen

7.1.1 Gebäude

Für unseren Vergleich soll ein Einfamilienhaus mit einem Heizleistungsbedarf von 5 kW und einem Heizwärmebedarf von 10'000 kWh untersucht werden. Der Warmwasserbedarf wird im nachfolgenden Vergleich nicht betrachtet. Das Gebäude verfüge über Thermoaktives Bauteilsystem (TABS), womit eine Beheizung mit Vorlauftemperaturen von 24°C ermöglicht wird.

7.1.2 Wirtschaftliche Randbedingungen

Der wirtschaftliche Vergleich soll mit der Annuitätenmethode erfolgen. Dabei soll eine Realwert-Betrachtung mit einem Realzins von 2%. durchgeführt werden. Die Lebensdauer der Sonde wird mit 40 Jahren, der Umwälzpumpe mit 20 Jahren und der Wärmepumpe mit 15 Jahren eingesetzt. Als Strompreis soll 15 Rp./kWh eingesetzt werden.

7.2 Vergleichsvariante mit Wärmepumpe

Als Vergleichsvariante soll eine konventionelle Wärmepumpe mit einem COP von 4 eingesetzt. werden. Als Wärmequelle diene eine 125 m tiefe Erdwärmesonde (wassergefüllt). Die Umwälzpumpe habe eine Strom-Aufnahmeleistung von 120 W. Es wird von jährlichen Wartungs- und Unterhaltskosten von 200 Fr./a ausgegangen.

	Inv	estition [Fr]	Lebensdauer	An	nuität
Erdwärmesonde 125m	Fr.	11'000	40	Fr.	402
Bohr-Nebenkosten	Fr.	2'000	40	Fr.	73
Sondenzuleitung	Fr.	4'000	40	Fr.	146
Umwälzpumpe	Fr.	1'000	20	Fr.	61
Wärmepumpe	Fr.	16'000	15	Fr.	1'245
Investitionskosten total:				Fr.	1'927
Betriebskosten:					
Stromkosten bei 15 Rp./kWh				Fr.	411
Wartung / Unterhalt:				Fr.	200
Jahreskosten Investition & Betrieb:				Fr.	2'338

7.3 Direktheizsonde ohne Wärmepumpe

Um die geforderten 24°C Vorlauftemperatur erreichen zu können, muss mit einer 50mm Doppel-U-Sonde gemäss Abb. 5.15 eine Bohrtiefe von 750m erreicht werden. Ideale Bedingungen vorausgesetzt, kann das Bohrloch mit einem 6 ³⁄₄" PDC-Meissel auf 750m abgeteuft werden können (cf. Kapitel 6.2.1). Die Umwälzpumpe habe eine Stromaufnahmeleistung von 200 W. Im Gegensatz zu einer Lösung mit einer Wärmepumpe sind bei der Direktheizsonde über die Lebensdauer der Anlage mit keinen Wartungs- und Unterhaltskosten zu rechen.

	Investit	ion Lebensdaue	er An	nuität
	[Fr]	[a]		
Sondenrohre 750m	Fr. 26'	000 40	Fr.	950
Bohrung	Fr. 39'	000 40	Fr.	1'426
Bohr-Nebenkosten	Fr. 6'	000 40	Fr.	219
Hinterfüllung	Fr. 9'	000 40	Fr.	329
Sondenzuleitung	Fr. 4'	000 40	Fr.	146
Umwälzpumpe / Plattentauscher	Fr. 3'	000 20	Fr.	183
Investitionskosten total:			Fr.	3'253
Betriebskosten:				
Stromkosten bei 15 Rp./kWh			Fr.	60
Wartung / Unterhalt:			<u>. </u>	<u></u>
Jahreskosten Investition & Betrieb:			Fr.	3'313

7.4 Vergleich und Schlussfolgerungen

Der Vergleich der 2 Varianten zeigt, dass mit der Direktheizsonde mit jährlich ca. Fr. 1'000.höheren Kosten zu rechnen ist. Es ist durchaus denkbar, dass mit der Weiterentwicklung der Bohrtechnik in Zukunft die Investitionskosten so gesenkt werden können, dass diese auf das Kostenniveau der Grundvariante gesenkt werden können.

Zu beachten sind dabei allerdings die folgenden Punkte:

- 1. Mit geschlossenen Direktheizsonden ist keine Warmwasserproduktion möglich.
- 2. Der Bohrgrund hat eine entscheidende Bedeutung für die Machbarkeit. In der Projektierungsphase ist dieser in der Regel nicht genügend gut bekannt. Es kann in der Regel nicht davon ausgegangen werden, dass über die ganze Bohrtiefe kein Konglomerat vorhanden ist, dass das Bohrloch genügend Standfestigkeit aufweist und dass keine Wassereinbrüche stattfinden werden.
- 3. Die Machbarkeit von 50mm Doppel-U-Sonden von 600 m Tiefe wurde bejaht. Bei den benötigten 750 m Tiefe wäre die Machbarkeit für die Sonde noch zu untersuchen.
- 4. Die relativ geringe, mögliche Sondenbelastung (Entzugsleistung pro Bohrmeter) hebt den Kostenvorteil wieder auf, dass keine Wärmepumpe für die Heizung installiert werden muss. Die kleine Sondenbelastung ergibt sich physikalisch daraus, dass im oberen Teil der Sonde die unbeeinflusste Erdreichtemperatur tiefer ist als die benötigte Quellentemperatur des Sondenfluids. Ein Wärmeentzug ist deshalb nur im untersten Drittel der Sonde möglich.

8 Symbolverzeichnis

8.1 Lateinische Symbole

а	Temperaturleitfähigkeit	[m²/s]
b	Exzentrizität bei Doppel – U – Sonden	[-]
В	Sondenabstand verschiedener Erdwärmesonden	[m]
Bu	Rohrabstand des hinaufströmenden zum hinunterströmenden Fluid (shank spa	cing) [m]
<i>cp</i> _{Sole}	spez. Wärmekapazität des Sondenfluids	[J/(kgK)]
Di	Innendurchmesser der Sondenrohre	[m]
DimAxi	Anzahl Rechenknoten in axialer Richtung	[-]
DimRad	Anzahl Rechenknoten in radialer Richtung	[-]
Es	dimensionslose Zeit von Eskilson	[-]
f	Gitterfaktor für das Rechengitter in radialer Richtung	[-]
g	dimensionslose Temperatursprungantwort der Erde nach Eskilson	[-]
Н	Erdwärmesondenlänge, Bohrtiefe	[m]
'n	Massenstrom, Sondendurchsatz (pro Erdwärmesonde)	[kg/s]
m	Anzahl Rechenknoten in radialer Richtung (=DimRad)	[-]
Nu	Nusseltzahl	[-]
kf	Verhältnis der Fliessgeschwindigkeit des hinauf- zum hinunterströmende	en Fluid [-]
Pr	Prandtlzahl	[-]
∆p	Druckabfall	[Pa]
ġ	Spezifische Wärmeentzugsleistung der Erdwärmesonde pro Länge	[W/m]
\dot{q}_{geo}	Geothermischer Wärmefluss aus dem Erdinnern	[W/m ²]
$\Delta \mathbf{q}_i$	Wärmeverlust vom hinaufströmenden ans hinunterströmende Fluid	[W/m]
Ż	Leistung	[W]
Re	Reynoldszahl	[-]
r _o	Innenradius des Sondenrohres	[m]
r _s	Aussenradius des Sondenrohrs	[m]
<i>r</i> _i	Innenradius des inneren Koaxialrohrs	[m]
r _{isol}	Aussenradius des isolierten Sondenrohrs bei Doppel-U-Sonden	[m]
r _a	Aussenradius des inneren Koaxialrohrs	[m]
r ₁	Bohrradius	[m]
r _b	radialer Abstand von der Sondenachse (Variable)	[m]
R_{α}	Wärmeübergangswiderstand (vom Fluid zum Sondenrohr)	[Km/W]
R _a	interner Sondenwiderstand (von hinauf- zu hinabströmendem Fluid)	[Km/W]
R_b	thermischer Bohrlochwiderstand (von Fluid - bis Bohrradius) in Tiefe z	[Km/W]
R_{b}^{*}	über die Bohrtiefe gemittelter, thermischer Bohrlochwiderstand	[Km/W]
R _c	thermischer Sondenwiderstand (von Sondenrohr- bis Bohrradius)	[Km/W]
R _i	thermischer Ersatzwiderstand zwischen T_{up} und T_{down}	[Km/W]

ΔT_{Grad}	Temperaturgradient im unbeeinflussten Erdreich	[K/m]
T _b	Bohrlochtemperatur in Tiefe z (auf dem Radius r1)	[°C]
$\overline{T_{b}}$	über die Bohrtiefe gemittelte Bohrlochtemperatur (auf dem Radius r_1)	[°C]
T_f	mittlere Fluidtemperatur in der Tiefe z	[°C]
$\overline{T_f}$	mittlere Fluidtemperatur, ½ (<i>T_{Quelle}</i> + <i>T_{Rücklauf}</i>)	[°C]
T _{down}	Temperatur des hinunterströmenden Fluids in der Tiefe z	[°C]
$\overline{T_{Luft}}$	langjährige Mitteltemperatur der Aussenluft	[°C]
T_m	ungestörte Erdreichmitteltemperatur (in der Tiefe z)	[°C]
T _{mo}	Jahresmitteltemperatur der Erdoberfläche	[°C]
T _{Quelle}	Quellentemperatur (Temperatur des ausströmenden Sondenfluids)	[°C]
T _{Rücklauf}	Rücklauftemperatur (Temperatur des einströmenden Sondenfluids)	[°C]
T _{up}	Temperatur des hinaufströmenden Fluids in der Tiefe z	[°C]
ts	Sondenzeitkonstante	[s]
V	Strömungsgeschwindigkeit	[m/s]
W	Sandstärke des Innenrohrs bei Koaxialsonden (r _a – r _i)	[m]
Z	Tiefe im Erdreich, von der Erdoberfläche an gerechnet	[m]
Z	Höhe des Standorts über dem Meeresspiegel	[m]

8.2 Griechische Symbole

α	Wärmeübergangskoeffizient des Sondenfluids an die Sonde	[W/(m ³ K)]
β	dimensionsloser thermischer Widerstand Sondenrohr bis Fluid	[-]
ξ	dimensionsloser Druckverlustkoeffizient (Rohrreibungszahl, oft auch λ)	[-]
γ	Eulerkonstante, 0.5772	[-]
ν	kinematische Viskosität der Sondenfüllung	[m²/s]
λ_{Earth}	Wärmeleitfähigkeit der Erde	[W/(mK)]
λ_{Fill}	Wärmeleitfähigkeit der Hinterfüllung	[W/(mK)]
λ_{isol}	Wärmeleitfähigkeit des isolierten Sondenrohrs	[W/(mK)]
λ_s	Wärmeleitfähigkeit der Sondenrohre	[W/(mK)]
λ_w	Wärmeleitfähigkeit des Innenrohrs bei Koaxialsonden	[W/(mK)]
σ	Konduktivitätsparameter der Hinterfüllung	[-]

9 Literaturverzeichnis

- **Carslaw, H.S.; Jaeger, J.C. (1959):** Conduction of heat in solids. 2nd ed., Oxford Univers. Press, London.
- **Claesson, J.; Eskilson, P. (1987):** Conductive Heat Extraction by a Deep Borehole. Analytical Studies. Dep. of Mathematical Physics, University of Lund.
- Claesson, J.; Eskilson, P. (1988): Simulation Model for Thermally Interacting Heat Extraction Boreholes. Numerical Heat Transfer, vol. 13, pp. 149-165.
- Eskilson, P. (1987): Thermal Analysis of Heat Extraction Boreholes. Department of Mathematical Physics, Lund Institute of Technology, Lund, Sweden. ISBN 91-7900-298-6
- **Eugster, W. (1998):** Langzeitverhalten der Erdwärmesonden-Anlage in Elgg/ZH. PSEL-Projekt Nr. 102. Projekt- und Studienfonds der Elektrizitätswirtschaft.
- Hellström, G. (1991): Ground Heat Storage. Thermal Analyses of Duct Storage Systems. Theory. Dep. of Mathematical Physics, University of Lund, Sweden. ISBN 91-628-0290-9
- Hopkirk, R.; Rybach, L.; Stalder, T. (1994): Tiefe Erdwärmesonden. BFE, Bern.
- Huber, A.; Schuler, O. (1997): Berechnungsmodul für Erdwärmesonden. Forschungsprogramm Umgebungs- und Abwärme, Wärmekraftkopplung. Bundesamt für Energie, Bern.
- Huber, A.; Pahud, D. (1999a): Untiefe Geothermie: Woher kommt die Energie? Forschungsprogramm Geothermie. Bundesamt für Energie (BFE), Bern.
- Huber, A.; Pahud, D. (1999b): Erweiterung des Programms EWS für Erdwärmesondenfelder. Schlussbericht. Bundesamt für Energie (BFE), Bern.
- Huber, A. (1999): Hydraulische Auslegung von Erdwärmesondenkreisläufen. Schlussbericht. Bundesamt für Energie (BFE), Bern.
- Kohl, T.; Salton, M.; Rybach, L. (2000): Data analysis of the deep borehole heat exchanger plant Weissbad. Proceedings World Geothermal Congress 2000, Kyushu Tohoku, Japan
- Leu, W.; Keller, G.; Mégel, Th.; Schärli, U.; Rybach, L. (1999): Programm SwEWS-99. Berechnungsprogramm für geothermische Eigenschaften der Schweizer Molasse (0-500m). Schlussbericht. Bundesamt für Energie, Bern.
- Leu, W.; Keller, G.; Matter, A.; Schärli, U.; Rybach, L. (1999): Geothermische Eigenschaften Schweizer Molassebecken (Tiefenbereich 0-500m). Bundesamt für Energie, Bern.
- **Maraini, S. (2000):** Vergleich von Software zur Dimensionierung von Erdwärmesonden-Anlagen. Diplomarbeit am Institut für Geophysik der ETH Zürich.
- Merker, G. (1987): Konvektive Wärmeübertragung. Springer-Verlag.
- Medici, F.; Rybach, L. (1995): Geothermal Map of Switzerland 1995 (Heat Flow Density), Matériaux pour la Géologie de la Suisse, Géophysique Nr. 30. Schweizerische Geophysikalische Kommission.
- Rohner, E. ; Bassetti, S. (2004): Zwischenbericht Projekt Erfolgskontrolle und Planungsinstrumente für EWS-Feld Hotel Dolder Zürich. Forschungsprogramm Geothermie, BFE, Bern.
- Salton, M. (1999): Untersuchungen zum Verhalten von Erdwärmesonden. Diplomarbeit am Institut für Geophysik der ETH Zürich.
- Signorelli, S. (2004): Geoscientific Investigations for the Use of Shallow Low-Enthalpy Systems. Dissertation ETH Zürich, No. 15519.
- Werner, A.; Bigler, R.; Niederhauser, A. et. al. (1996): Grundlagen für die Nutzung von Wärme aus Boden und Grundwasser im Kanton Bern. Thermoprogramm Erdwärmesonden, Burgdorf. Schlussbericht. Wasser- und Energiewirtschaftsamt des Kt. Bern (WEA).

10 Anhang

10.1 Eingabeparameter für die Berechnungen im Programm EWS

10.1.1 Berechnungsbeispiel für 600m tiefe Koaxialsonden

Nachfolgend sind die Eingabeparameter für das Beispiel aus Kapitel 5.3 (Abb. 5.23 mit Sondenmassenstrom 0.8 kg/s und kf = 1) im angepassten Programm EWS dargestellt.

Sonden	Sole	Erde	Simulation	Entzug	Parameter Ir	nfo
Sonden-	Geometrie:			Durchmesser 9	ionde [m] (ausen)	0 1100
		•		Wandstärke S	onde [m]	0.0050
Тур:	Koaxial	C Doppel-U		Wärmeleitfähig	keit Sondenrohr [W/m	к] <mark>0.40</mark>
Anzahl S	onden	1		Bei Koaxial-S	Sonden:	
Sondena	ibstand B [m]	10.0		Innenrohr-Duro	hmesser [m] (aussen)	0.0746
Sondenlä	inge H [m]	600.0		Wandstärke In	nenrohr (m)	0.0040
Bohrdurc	hmesser [m]	0.150		Wärmeleitfähig	keit Innenrohr (W/mK	0.40
Dimension	slose Tempe	ratursprung	jantworten	(g - functions):	
Randbedir	ngung mit g-fund	ctions ? 🕝	ja C nein		ln(t/ts) = -4	4.820
Sondenab	stand der g-fun	ction [m]	10.0	B/H eff: 0.50	In(t/ts) = -2	5.690
			1	_	ln(t/ts) = 0	6.290
g-function:	Einzelsonde			<u>-</u>	ln(t/ts) = +2	6.570
grafische [Darstellung der	g-function:	Graf g-functi	on	ln(t/ts) = +3	6.600

Abb. 10.1 Geometrische Sondenparameter und verwendete g-function

Abb. 10.2 Parameter des Sondenfluids und Temperaturen im ungestörten Erdreich

Sonden	Sole	Erd	e Simulat	ion Entzug	Param	neter Info	1			
Anzahl horizontale Schichten: 10 Externe Bodendaten: SwEwS Bokrlochwiderstände:										
Stoffwerte	der Erde:			Stoffwerte	Stoffwerte der Hinterfüllung:			Rohrabstand [0.093 [r ('Shank spacing')		
Homogen:	1.[W/mK]	p[kg/m3] 2600	cp [J/kgK] 1000	1 [W/mK] 0.81	p[kg/m3] 1180	cp [J/kgK] 3040	Ra [mK/W] 0.074 (falls unbe	Rb (mKA 0.110 kannt leer l	V]Rc[mK 0.099 assen]	
	C Erdre ⊙ Erdre	ich homoge ich inhomog	n Ien	○ Hinte● Hinte	rfüllung horr rfüllung inho	iogen imogen	 Bered C Vorga 	chnung nac abe der Wic	ch Hellströ derstände	
	1 [W/mK]	ρ [kg/m3]	cp [J/kgK]	x [W/mK]	ρ [kg/m3]	cp [J/kgK]	Ra [mK/W]	Rb [mK/\	V]Rc[mK	
Schicht 1	2.60	2600	1000	0.81	1180	3040	0.074	0.110	0.099	
Schicht 2	2.60	2600	1000	0.81	1180	3040	0.074	0.110	0.099	
Schicht 3	2.60	2600	1000	0.81	1180	3040	0.074	0.110	0.099	
Schicht 4	2.60	2600	1000	0.81	1180	3040	0.074	0.110	0.099	
Schicht 5	2.60	2600	1000	0.81	1180	3040	0.074	0.110	0.099	
Schicht 6	2.60	2600	1000	0.81	1180	3040	0.074	0.110	0.099	
Schicht 7	2.60	2600	1000	0.81	1180	3040	0.074	0.110	0.099	
Schicht 8	2.60	2600	1000	0.81	1180	3040	0.074	0.110	0.099	
Schicht 9	2.60	2600	1000	0.81	1180	3040	0.074	0.110	0.099	
	2.60	2600	1000	0.81	1180	3040	0.074	0 110	0.099	

Abb. 10.3 Stoffwerte des Bodens, der Hinterfüllung und Bohrlochwiderstände

Abb. 10.4 Quellentemperatur und Sonden-Rücklauftemperatur bei 31-tägigem Dauerentzug von 5 kW Leistung

10.1.2 Berechnungsbeispiel für 600m tiefe, inhomogene Doppel-U-Sonde

Nachfolgend sind die Eingabeparameter für das Beispiel aus Kapitel 5.2.1 (Abb. 5.13 mit Sondenmassenstrom 0.8 kg/s und Exzentrizität = 0.5) im angepassten Programm EWS dargestellt. Die Hinterfüllung hat oben eine Wärmeleitfähigkeit von λ_{Fill} = 0.4 W/mK und unten von 1.5 W/mK.

/5								
port	Ausgabe	Fenster Inf	fo					
Τ								
	Sonden	Sole	Erde	Simulation	Entzug	Parameter	Info	•
	Sonden	Geometrie:			Durchmesser 9	Sonde (m) (aus	enì	0.0500
	50 mm	doppel-U-Sono	de 💌		Wandstärke S	onde [m]	,	0.0000
1					in an actance o	ougo fuil		0.0037
	Тур:	🔿 Koaxial	Oppel-U		Wärmeleitfähig	gkeit Sondenrol	nr [₩/mK] 0.40
	Anzahl S	ionden	1		Bei Koaxial-S	Sonden:		
	Sonden	abstand B [m]	10.0		Innenrohr-Duro	chmesser [m] (a	iussen)	0.0250
	Sonden	änge H [m]	600.0		Wandstärke Ir	nnenrohr (m)		0.0025
	Bohrdur	chmesser [m]	0.150		Wärmeleitfähig	gkeit Innenrohr	[W/mK]	0.40
	Dimensio	nslose Temp	eratursprung	antworten (g - functions	s):		
	Randbedi	ngung mit g-fui	nctions ? 💽 j	a 🔿 nein		ln(t/	ts) = -4	4.820
	Sondenal	ostand der g-fu	nction [m]	10.0	B/H eff: 0.02	In(t/	ts) = -2	5.690
					_	In(t/	ts) = 0	6.290
	g-function	Einzelsond	e	•	·]	ln(t/	ts) = +2	6.570
	grafische	Darstellung de	r g-function:	Graf g-functio	n	In(t/	ts) = +3	6.600

Abb. 10.5 Geometrische Sondenparameter und verwendete g-function

Abb. 10.6 Parameter des Sondenfluids und Temperaturen im ungestörten Erdreich

nt Ausgabe Eenster Info											
Sonden	Sole	Erd	le Simu	ulation	Entzug	Param	ieter Í Info				
Anzahl horizontale Schichten: 10 Externe Bodendaten: SwEWS Stoffwerte der Erde: Stoffwerte der Hinterfüllung:									Bohrlochwiderstände: Rohrabstand ('Shank spacing')		
Homogen:	1 [w//mK] 2.60	ρ [kg/m3] 2600	cp (J/kgK) 1000		1 [₩/mK] 0.95	p[kg/m3] 1180	cp (J/kgK) 3040	Ra (mK/W) 0.204 (falls unbe	Rb (mKA 0.093 kannt leer	W Rc (mK/W) 0.089 lassen)	
	C Erdreich homogen				C Hinterfüllung homogen			Berechnung nach Hellström C Vorgabe der Widerstände			
	1 [W/mK]	p[kg/m3]	cp [J/kgK]		1 [W/mK]	ρ[kg/m3]	cp [J/kgK]	Ra [mK/W]	Rb (mKA	W]Rc[mK/W]	
Schicht 1	2.60	2600	1000		0.40	1180	3040	0.270	0.133	0.129	
Schicht 3	2.60	2600	1000		0.40	1180	3040	0.270	0.133	0.129	
Schicht 4	2.60	2600	1000		0.40	1180	3040	0.270	0.133	0.129	
Schicht 5	2.60	2600	1000		0.40	1180	3040	0.270	0.133	0.129	
Schicht 6	2.60	2600	1000		1.50	1180	3040	0.138	0.053	0.049	
Schicht 7	2.60	2600	1000		1.50	1180	3040	0.138	0.053	0.049	
Schicht 8	2.60	2600	1000		1.50	1180	3040	0.138	0.053	0.049	
Schicht 9	2.60	2600	1000		1.50	1180	3040	0.138	0.053	0.049	
Schicht 10	2.60	2600	1000		1.50	1180	3040	0.138	0.053	0.049	
Programm EWS, Lizenz für Huber Energietechnik AG © Huber Energietechnik, Zürich											

Abb. 10.7 Stoffwerte des Bodens, der Hinterfüllung und Bohrlochwiderstände

Abb. 10.8 Quellentemperatur und Sonden-Rücklauftemperatur bei 31-tägigem Dauerentzug von 5 kW Leistung

10.2 Quellcode für die Programm-Anpassungen im Modul EWS

10.2.1 Quellcode für den Wärmeübergang α Fluid - Sondenrohr

```
Function alpha1(NueSole, rhoSole, cpSole, lambdaSole, Massenstrom, Sondendurchmesser,
                Dicke_Sondenrohr,Innenrohrdurchmesser : real) : real;
(* Function alphal: Waermeuebergang Sole-Hinterfuellung, wenn Pumpe laeuft *)
 var x,Geschw,Re,Pr,Nu turbulent,Nu laminar,
    Nu0, Nu, Di, St, Xi0, Xi, K1, K2, K10, St0
                                             : real;
 begin
 Di := Sondendurchmesser - 2 * Dicke Sondenrohr;
  if not Koaxialsonde then Geschw := 2*Massenstrom/rhoSole/sqr(Di)/Pi
                      else Geschw := Massenstrom/rhoSole/Pi
                                     /(sqr(Di/2)-sqr(Innenrohrdurchmesser/2));
  Re := Geschw * Di / nueSole;
                                                  (* Reynoldszahl *)
  Pr := NueSole * rhoSole * cpSole / lambdaSole; (* Prandtlzahl *)
    (* Xi = Druckverlustkoeffizient nach Petukhov (1970) *)
  if Hellstroem then Xi := 1 / sqr(1.58*ln(Re) - 3.28)
                else Xi := 1 / sqr(1.82*ln(Re)/ln(10) - 1.64);
    (* Stantonzahl nach Petukhov (1970), gueltig fuer turbulenten Bereich *)
  K1 := 1 + 27.2 * Xi / 8;
  K2 := 11.7 + 1.8 / hoch(Pr, 1/3);
  St := Xi/8 / ( K1 + K2 * sqrt(Xi/8) * (hoch(Pr,2/3)-1)); (* Stantonzahl *)
    (* Stantonzahl nach Petukhov an der Grenze turbulent-Uebergangszone *)
  Xi0:= 0.031437;
  K10:= 1.106886;
  ST0:= Xi0/8/ ( K10+ K2 * sqrt(Xi0/8) * (hoch(Pr,2/3)-1));
  Nu0:= St0*10000*Pr; (* Nusseltzahl beim Uebergang turbulent-Uebergangszone *)
  Nu_turbulent := St * Re * Pr;
                                            (* Nusseltzahl turbulente Zone *)
                                            (* Nusseltzahl laminare Zone *)
  Nu_laminar
              := 4.36;
  if Re >= 10000 then Nu := Nu_turbulent; (* turbulent *)
                                            (* laminar
  if Re <= 2300 then Nu := Nu laminar
                                                         *)
  else if Hellstroem then Nu:=Nu turbulent else
    if Re < 10000 then Nu := Nu_laminar (* Uebergangszone laminar/turbulent *)
       * exp(ln(Nu0/Nu_laminar) / ln(10000/2300) * ln(Re/2300));
  x := Nu * lambdaSole / Di;
  alpha1 := x;
 end;
```

10.2.2 Quellcode für die Berechnung der Bohrlochwiderstände Ra und Rb

```
Procedure Bohrlochwiderstaende(lambdaFill: real; var R1,Ra,Rb,Rc : real);
 var
       i : integer;
 begin
                                           (* Widerstaende im Bohrloch *)
  if Koaxialsonde then begin
                                                                *)
                                           (* Koaxialsonden
    if Hellstroem then begin
      R1:=1/2/Pi/dl*(1/alpha/r[0] + ln(Sondendurchmesser/2/r[0])/lambdaRohr
                                   + ln(rz[1]*2/Sondendurchmesser)/lambdaFill);
      Ra := 1/2/Pi/alpha2/ri + 1/Pi/alpha3/Innenrohrdurchmesser
            + ln(Innenrohrdurchmesser/2/ri)/lambdaInnenrohr/2/Pi;
      Rb := R1*dl + 1/2/Pi*ln(r[1]/rz[1])/lambdaFill;
    end else begin
     if Rc > 0 then Rb := Rc + 1/2/Pi/alpha/r[0];
    if (( \mbox{Ra}\xspace>0 ) and ( \mbox{Rb}\xspace>0 )) then begin
      R1 := Rb/dl - 1/2/Pi/dl*ln(r[1]/rz[1])/lambdaFill;
    end else if Rb > 0 then begin
      Ra := 1/2/Pi/alpha2/ri + 1/Pi/alpha3/Innenrohrdurchmesser
             + ln(Innenrohrdurchmesser/2/ri)/lambdaInnenrohr/2/Pi;
      R1 := Rb/dl - 1/2/Pi/dl*ln(r[1]/rz[1])/lambdaFill;
    end else if R1 > 0 then begin
      Ra := 1/2/Pi/alpha2/ri + 1/Pi/alpha3/Innenrohrdurchmesser
             + ln(Innenrohrdurchmesser/2/ri)/lambdaInnenrohr/2/Pi;
      Rb := R1*dl + 1/2/Pi*ln(r[1]/rz[1])/lambdaFill;
    end else begin
      R1:=1/2/Pi/dl*(1/alpha/r[0]+ln(rz[1]/r[0])/lambdaFill);
      Ra := 1/2/Pi/alpha2/ri + 1/Pi/alpha3/Innenrohrdurchmesser
             + ln(Innenrohrdurchmesser/2/ri)/lambdaInnenrohr/2/Pi;
      Rb := R1*d1 + 1/2/Pi*ln(r[1]/rz[1])/lambdaFill;
    end;
   end;
   Rc := Rb - 1/2/Pi/alpha/r[0];
                                    (* Koaxialsonde
   end;
                                                           *)
   if not Koaxialsonde then begin
                                    (* Doppel - U - Sonde *)
    if Hellstroem then begin
     Sigma := (lambdaFill-lambdaErd)/(lambdaFill+lambdaErd);
     if Sondendurchmesser > 2* r[0] then
       Beta := lambdaFill*(1/alpha/r[0]+1/lambdaRohr*ln(Sondendurchmesser/2/r[0]))
     else Beta:=lambdaFill/alpha/r[0];
     Ra := 1/Pi/lambdaFill*(ln(sqrt(2)*Exzentrizitaet*r[1]/r[0])
             -0.5*ln(2*Exzentrizitaet*r[1]/r[0])
             -0.5*Sigma*ln((1-sqr(sqr(Exzentrizitaet)))/(1+sqr(sqr(Exzentrizitaet)))))
            + Beta/2/Pi/lambdaFill;
     Rb := 1/8/Pi/lambdaFill*(Beta+ln(r[1]/r[0])+ln(r[1]/Bu)
              +Sigma*ln(sqr(sqr(r[1]))/(sqr(sqr(r[1]))-sqr(sqr(Bu/2))))
              -sqr(r[0])/sqr(Bu)*sqr(1-Sigma*sqr(sqr(Bu))/4
                               /(sqr(sqr(r[1])) - sqr(sqr(Bu/2))))
              /((1+Beta)/(1-Beta) + sqr(r[0])/sqr(Bu)
                              *(1+Sigma*sqr(sqr(Bu))*sqr(sqr(r[1]))
                              /sqr(sqr(sqr(r[1]))-sqr(sqr(Bu/2)))));
     R1 := Ra/4/dl;
    end else begin
    if Rc > 0 then Rb := Rc + 1/8/Pi/alpha/r[0];
    if (( Ra > 0 ) and ( Rb > 0 )) then begin
      R1 := Ra/4/dl;
    end else if Rb > 0 then begin
      R1 := Rb/dl - 1/2/Pi/dl*ln(r[1]/rz[1])/lambdaFill;
      Ra := R1 * 4 * dl;
    end else if R1 > 0 then begin
      Ra := R1 * 4 * dl;
      Rb := R1*dl + 1/2/Pi*ln(r[1]/rz[1])/lambdaFill;
    end else begin
      R1 := 1/8/Pi/dl * (1/alpha/r[0] + ln((r[1]-rz[1])/r[0])/lambdaFill);
      Ra := R1 * 4 * dl;
      Rb := R1*dl + 1/2/Pi*ln(r[1]/rz[1])/lambdaFill;
    end;
    end;
   Rc := Rb - 1/8/Pi/alpha/r[0];
   end;
                    (* Doppel - U - Sonde *)
                    (* Procedure Bohrlochwiderstaende *)
  end;
```

10.2.3 Quellcode für die Integration der Bohrlochwiderstände Ra und Rb

Der nachfolgende Auszug zeigt die Anpassung in der Procedure "InitEWS" mit dem Aufruf der neuen Procedure "Bohrlochwiderstaende":

```
for i:=1 to DimAxi do begin
                                     (* Berechnung der Bohrlochwiderstaende *)
  if not FillVariabel then begin
    RaV[i]:=Ra; RbV[i]:=Rb; RcV[i]:=Rc; R1V[i]:=R1;
  end:
  Bohrlochwiderstaende(lambdaFillV[i],R1V[i],RaV[i],RbV[i],RcV[i]);
  if Koaxialsonde then begin (* Koaxialsonde *)
    R2[i]:=1/2/Pi/dl*(ln(r[1]/rz[1])/lambdaFillV[i]+ln(rz[2]/r[1])/lambdaErde[i]);
    Larun[i] := dl/RaV[i];
    L1run[i] := 1 / R1V[i];
    L1stop[i]:= 1 / (R1V[i] - 1/2/Pi/alpha/r[0]/dl
                 + 1/2/Pi/alpha0(lambdaSole,Sondendurchmesser)/r[0]/dl);
    Lastop[i] := L1stop[i];
  end else begin
                             (* Doppel - U - Sonde *)
    R2[i] := (RbV[i] - RaV[i]/4)/dl + 1/2/Pi/dl*ln(rz[2]/r[1])/lambdaErde[i];
    L1run[i] := 1 / R1V[i];
    L1stop[i]:= 1 / (R1V[i] - 1/8/Pi/alpha/r[0]/dl
                   + 1/8/Pi/alpha0(lambdaSole,Sondendurchmesser)/r[0]/dl);
  end;
end;
Ra := 0; Rb := 0; Rc := 0; R1 := 0;
for i:=1 to DimAxi do begin
  Ra := Ra + RaV[i]/DimAxi; Rb := Rb + RbV[i]/DimAxi;
  Rc := Rc + RcV[i]/DimAxi; R1 := R1 + R1V[i]/DimAxi;
                                (* Ende Berechnung der Bohrlochwiderstaende *)
end;
```

10.2.4 Quellcode für die Berechnung der äusseren Randbedingungen

```
Procedure RandAussen_gfunc (var TRT
                                                 : real;
                          k,Woche,Zeitschritt
                                                  : integer:
                          simstep
                                                  : longint;
                          RepRandbed
                                                  : integer;
                                                  : MatrixQ;
                          0
                          cpErd, rhoErd, lambdaErd,
                          Rechenradius, Sondenlaenge,
                          gpar1,gpar2,gpar3,gpar4,
                          qpar5,qpar6
                                                  : real;
                          DimAxi
                                                  : integer);
 { Diese Procedure berechnet die Randbedingung mit der g-Function
   var u,STrt,ts,g,go,Rq
                          : extended;
       i,i
                              : integer;
   begin
     ts := sqr(Sondenlaenge) / 9 / lambdaErd * rhoErd * cpErd;
     STrt:= 0;
     for i:= 1 to Woche do begin
       u := ln( i / ts * 604800 *RepRandbed );
                                                (* Aenderung 2.10.02 *)
       if u>2.5 then u:=2.5;
       go := 0.5*u + 6.84;
       if u<uMin then g := go
                else g := gpar1 + gpar2*u + gpar3*sqr(u) + gpar4*u*sqr(u) +
                       gpar5*sqr(sqr(u)) + gpar6*u*sqr(sqr(u));
       if u<-2 then if (go-0.3)>g then g:=go;
       g := g - ln(Rechenradius/Sondenlaenge/0.0005);
          := g / 2 / Pi / lambdaErd;
       Ra
       STrt := STrt + (-Q[k,Woche-i+1]+Q[k,Woche-i])/Sondenlaenge*DimAxi*Rq;
     end;
     Trt := STrt;
   end;
```

10.2.5 Quellcode für die Berechnung des Sondenfluids

```
Function TBRINE(var T
                                                 : Matrix;
               var TDown, Tup
                                                 : Vektor;
                   TSink,L0
                                                 : real;
                   L.La
                                                 : Vektor10;
                   Zeitschritt, subdt, substep
                                                : integer;
               var OWand
                                                 : Vektor;
                   mcpSole,mcpSoleUp,mcpSoleDown : real;
                   DimAxi
                                                 : integer;
                   stationaer
                                                 : boolean
                                                           ) :real;
 var i,k
                                      : integer;
     TOut, dt2, Lm0, Lm1, LmMin, L0mcpdt,
     Nichtad
                                      : real;
     Td, Tu, dTa, SummeT
                                      : Vektor:
 begin
           := Zeitschritt*60/subdt/substep; (* [s] *)
   dt2
   TDown[0] := TSink;
   TOut
           := 0;
   LOmcpdt := L0 / mcpSole * dt2;
   for i:=1 to DimAxi do SummeT[i] := 0;
   for k := 1 to Substep do begin
    if Koaxialsonde then begin (*** KoaxialSonde: Neu 10.1.2000 *)
     for i := 1 to DimAxi do begin
       Td[i] := (T[i,1] - TDown[i]) * L[i] / mcpsoleDown * dt2;
       if stationaer then TDown[i]:=(L[i]*T[i,1]+L0*TDown[i-1]+La[i]*Tup[1+DimAxi-i])
                                     /(L[i]+L0+La[i])
       else begin
         dTa[i] := (Tup[1+DimAxi-i]-Tdown[i]);
         TDown[i]:=TDown[i] + (TDown[i-1]-TDown[i]) * L0 / mcpsoleDown * dt2
                            + dTa[i]*La[i]/mcpsoleDown*dt2 + Td[i];
       end;
       Td[i] := (T[i,1] - TDown[i]) * L[i] / mcpsoleDown * dt2;
     end;
     TUp[0] := TDown[DimAxi];
     for i := 1 to DimAxi do begin
       if stationaer then
         TUp[i]:=(La[1+DimAxi-i]*Tdown[1+DimAxi-i]+L0*TUp[i-1])/(La[1+DimAxi-i]+L0)
       else TUp[i] := TUp[i] + (TUp[i-1]-TUp[i]) * L0 / mcpsoleUp * dt2
                             - dTa[1+DimAxi-1] * La[1+DimAxi-i] / mcpsoleUp * dt2;
     end;
     for i:= 1 to DimAxi do SummeT[i] := SummeT[i]+Td[i];
     TOut := TOut + TUp[DimAxi];
                  (*** Koaxialsonde: Ende des neuen Teils ****)
     end
                  else begin
     for i := 1 to DimAxi do begin
       Td[i] := (T[i,1] - TDown[i]) * L[i] / 2 / mcpsole * dt2;
       if stationaer then TDown[i] := (L[i]/2*T[i,1] + L0*TDown[i-1])/(L[i]/2+L0)
       else TDown[i] := TDown[i] + (TDown[i-1] - TDown[i]) * L0mcpdt + Td[i];
       Td[i] := (T[i,1] - TDown[i]) * L[i] / 2 / mcpsole * dt2;
     end;
     TUp[0] := TDown[DimAxi];
     for i := 1 to DimAxi do begin
       Tu[i] := (T[1+DimAxi-i,1] - TUp[i]) * L[1+DimAxi-i] / 2 / mcpsole * dt2;
       if stationaer then
         TUp[i]:=(L[1+DimAxi-i]/2*T[1+DimAxi-i,1] + L0*TUp[i-1])/(L[1+DimAxi-i]/2+L0)
       else TUp[i] := TUp[i] + (TUp[i-1] - TUp[i]) * LOmcpdt + Tu[i];
       Tu[i] := (T[1+DimAxi-i,1] - TUp[i]) * L[1+DimAxi-i] / 2 / mcpsole * dt2;
     end;
     for i:= 1 to DimAxi do SummeT[i] := SummeT[i]+Td[i]+Tu[1+DimAxi-i];
     TOut := TOut + TUp [DimAxi];
            end;
   end:
   if KoaxialSonde then for i:=1 to DimAxi do QWand[i]:=SummeT[i]*mcpSoleDown
                   else for i:=1 to DimAxi do QWand[i]:=SummeT[i]*mcpSole;
   TOut := TOut / Substep;
   TBRINE := TOut;
  end;
         (* Function TBRINE *)
```

10.3 Stoffwerte

10.4 Dimensionslose Temperatursprungantworten (g-functions)

Abb. 10.10 Ausgewählte Temperatursprungantworten (g-functions) für Erdwärmesondenfelder aus Eskilson (1987

10.5 Herleitung der Erdwärmesondengleichung für Duplex-Sonden

Für die Doppel-U-Sonde kann im Bohrloch im Falle einer symmetrischen Sondenrohranordnung das Modell für die thermischen Ersatzwiderstände gemäss Abb. 10.11 aufgestellt werden. Dabei ist T_b die Temperatur an der Bohrlochwand in der Tiefe z, T_{up} die Temperatur des hinaufströmenden Sondenfluids in der Tiefe z und T_{down} die Temperatur des nach unten strömenden Sondenfluids in der Tiefe z. R_i ist der thermische Ersatzwiderstand zwischen T_{up} und T_{down} . Mit Hilfe von R_i kann der internen thermische Widerstandes R_a ausgedrückt werden als

$$R_{a} = \frac{4 \cdot R_{b} \cdot R_{i}}{4 \cdot R_{b} + R_{i}}$$
Gl. 10.1

Abb. 10.11 thermische Ersatzwiderstände im Bohrloch

Löst man GI. 10.1 nach R_i auf, so erhält man

$$R_{i} = \frac{4 \cdot R_{b} \cdot R_{a}}{4 \cdot R_{b} - R_{a}}$$
Gl. 10.2

Im stationären Zustand kann man für das hinunterströmende Fluid in der Tiefe z die folgende Differentialgleichung aufstellen

$$\dot{\mathbf{m}} \cdot \mathbf{cp}_{\text{Sole}} \cdot \frac{\partial T_{\text{down}}}{\partial z} = \dot{\mathbf{q}}_{\text{down}}(z)$$
 GI. 10.3

wobei q_{down} [W/m] der spezifische Wärmefluss aus der Hinterfüllung in das nach unten strömende Sondenfluid ist. Analog dazu sieht die Differentialgleichung für das nach oben strömende Sondenfluid in der Tiefe z aus

$$-\dot{\mathbf{m}} \cdot \mathbf{cp}_{\text{Sole}} \cdot \frac{\partial T_{\text{up}}}{\partial z} = \dot{q}_{\text{up}}(z)$$
Gl. 10.4

wobei q_{up} [W/m] der spezifische Wärmefluss aus der Hinterfüllung in das nach oben strömende Sondenfluid ist.

Der Gesamt-Wärmeentzug in der Tiefe z ist

$$\dot{q}(z) = \dot{q}_{up}(z) + \dot{q}_{down}(z)$$
 GI. 10.5

und somit gilt

$$\dot{q}(z) = \dot{m} \cdot cp_{sole} \cdot \frac{\partial T_{down}}{\partial z} - \dot{m} \cdot cp_{sole} \cdot \frac{\partial T_{up}}{\partial z}$$
Gl. 10.6

10.5.1 Konstanter, spezifischer Wärmeentzug q

Unter der Annahme eines über die ganze Tiefe konstanten, spezifischen Wärmeentzugs \dot{q} kann Gl. 10.6 durch Integration

$$\cdot \int_{0}^{z} \partial T_{\text{down}} - \cdot \int_{0}^{z} \partial T_{\text{up}} = \frac{\dot{q}}{\dot{m} \cdot cp_{\text{Sole}}} \cdot \int_{0}^{z} \partial z$$
 GI. 10.7

vereinfacht werden zu

$$T_{down}(z) - T_{Rücklauf} - T_{up}(z) + T_{Quelle} = \frac{\dot{q} \cdot z}{\dot{m} \cdot cp_{Sole}}$$
GI. 10.8

Am Sondenfuss (d.h. z = H) gilt

$$T_{down}(H) = T_{up}(H)$$
GI. 10.9

und somit wird für z = H aus

Setzt man Gl. 10.10 in Gl. 10.8 ein, so erhält man

$$T_{up}(z) - T_{down}(z) = \frac{\dot{q} \cdot (H-z)}{\dot{m} \cdot cp_{Sole}}$$
GI.
10.11

Für das hinunter strömende Sondenfluid kann mit Hilfe der thermischen Widerstände im Bohrloch aus Abb. 10.11 die folgende Bilanzgleichung aufgestellt werden:

$$\dot{q}_{down}(z) = \frac{T_{up} - T_{down}}{R_i} + \frac{T_b - T_{down}}{2 \cdot R_b}$$
GI.
10.12

Die Bohrlochtemperatur T_b kann mit Gl. 3.23 geschrieben werden als

$$T_{b} = \dot{q} \cdot R_{b} + \frac{T_{up} + T_{down}}{2}$$
 GI.
10.13

Durch das Einsetzen von Gl. 10.13 und Gl. 10.2 in Gl. 10.12 erhält man

$$\dot{q}_{down}(z) = \frac{\dot{q}}{2} + \frac{T_{up} - T_{down}}{R_a}$$
 GI.
10.14

Ersetzt man darin T_{up} und T_{down} durch die Beziehung GI. 10.11, so erhält man

$$\dot{q}_{down}(z) = \frac{\dot{q}}{2} + \frac{\dot{q} \cdot (H-z)}{R_a \cdot \dot{m} \cdot cp_{Sole}}$$
GI.
10.15

Setzt man Gl. 10.15 in Gl. 10.3 ein, so erhält man

$$\frac{\partial T_{\text{down}}}{\partial z} = \frac{\dot{q}}{2 \cdot \dot{m} \cdot cp_{\text{Sole}}} + \frac{\dot{q} \cdot (H - z)}{R_{a} \cdot \dot{m}^{2} \cdot cp_{\text{Sole}}^{2}}$$
GI.
10.16

oder in der Integralform geschrieben als

$$\int_{0}^{z} \partial T_{\text{down}} = \frac{\dot{q}}{2 \cdot \dot{m} \cdot cp_{\text{Sole}}} \cdot \int_{0}^{z} \partial z + \frac{\dot{q} \cdot H}{R_{a} \cdot \dot{m}^{2} \cdot cp_{\text{Sole}}^{2}} \cdot \int_{0}^{z} \partial z - \frac{\dot{q}}{R_{a} \cdot \dot{m}^{2} \cdot cp_{\text{Sole}}^{2}} \cdot \int_{0}^{z} z \cdot \partial z \qquad \qquad \text{Gl.}$$
10.17

Durch die Integration wird daraus

$$T_{down}(z) = T_{R\ddot{u}cklauf} + \frac{\dot{q} \cdot z}{2 \cdot \dot{m} \cdot cp_{Sole}} + \frac{\dot{q} \cdot H \cdot z}{R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}} - \frac{\dot{q} \cdot z^{2}}{2 \cdot R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}}$$
GI.
10.18

Eingesetzt in GI. 10.11 kann damit auch T_{up} berechnet werden

$$T_{up}(z) = T_{R\bar{u}cklauf} + \frac{\dot{q} \cdot H}{\dot{m} \cdot cp_{Sole}} - \frac{\dot{q} \cdot z}{2 \cdot \dot{m} \cdot cp_{Sole}} + \frac{\dot{q} \cdot H \cdot z}{R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}} - \frac{\dot{q} \cdot z^{2}}{2 \cdot R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}}$$

$$Gl.$$

$$10.19$$

Mit GI. 10.10 wird daraus

$$T_{up}(z) = T_{Quelle} - \frac{\dot{q} \cdot z}{2 \cdot \dot{m} \cdot cp_{Sole}} + \frac{\dot{q} \cdot H \cdot z}{R_a \cdot \dot{m}^2 \cdot cp_{Sole}^2} - \frac{\dot{q} \cdot z^2}{2 \cdot R_a \cdot \dot{m}^2 \cdot cp_{Sole}^2}$$
GI.
10.20

Die Bohrlochtemperatur T_b (Gl. 10.13) wird damit zu

$$T_{b} = \dot{q} \cdot R_{b} + \frac{T_{Rucklauf} + T_{Quelle}}{2} + \frac{\dot{q} \cdot H \cdot z}{R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}} - \frac{\dot{q} \cdot z^{2}}{2 \cdot R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}} = \dot{q} \cdot R_{b} + \overline{T_{f}} + \frac{\dot{q} \cdot z}{R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}} \left(H - \frac{z}{2}\right) \quad \text{Gl.}$$

$$10.21$$

Die über die Bohrtiefe gemittelte Bohrlochtemperatur $\overline{T_{_{b}}}\,$ wird zu

$$\overline{T_{b}} = \frac{1}{H} \cdot \int_{0}^{H} T_{b} \cdot \partial z = \dot{q} \cdot R_{b} + \overline{T_{f}} + \frac{\dot{q}}{R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}} \left(\frac{H^{2}}{2} - \frac{H^{2}}{6}\right) = \dot{q} \cdot R_{b} + \overline{T_{f}} + \frac{\dot{q} \cdot H^{2}}{3 \cdot R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}} \qquad \text{Gl.}$$
10.22

Der effektive Bohrlochwiderstand R_{b}^{*} (Gl. 3.26) wird damit zu

$$R_{b}^{*} = \frac{\overline{T_{b}} - \overline{T_{f}}}{\dot{q}} = R_{b} + \frac{H^{2}}{3 \cdot R_{a} \cdot \dot{m}^{2} \cdot cp_{Sole}^{2}}$$
GI.
10.23

Gl. 10.23 gilt bei konstantem, spezifischen Wärmeentzug über die ganze Bohrtiefe. Diese Annahme ist in der Regel bei untiefen Erdwärmesonden recht gut erfüllt.

10.5.2 Konstante Bohrlochtemperatur T_b

Bei tiefen Erdwärmesonden kann man nicht mehr von einem konstanten Wärmeentzug über die Bohrlochtiefe ausgehen. Wie Abb. 5.24 schön zeigt, findet bei tiefen Erdwärmesonden, die im Dauerbetrieb stehen, eine Temperaturangleichung an der Bohrlochwand über die Bohrtiefe statt, wobei unten ein Wärmeentzug stattfindet und oben eine Wärmeabgabe ins Erdreich. Ein besserer Ansatz bei tiefen Erdwärmesonden ist somit die Annahme einer konstanten Bohrlochtemperatur T_b über die Bohrtiefe. Eskilson und Claeson (1988) haben für diesen Fall den effektiven Bohrlochwiderstand hergeleitet:

$$R_{b}^{*} = \frac{H}{\dot{m} \cdot cp_{\text{Sole}}} \cdot \sqrt{\frac{R_{b}}{R_{a}}} \cdot \coth\left(\frac{H}{\dot{m} \cdot cp_{\text{Sole}} \cdot \sqrt{R_{a} \cdot R_{b}}}\right)$$
Gl. 10.24

Das interessante an dieser Beziehung ist, dass Gl. 10.25 angenähert werden kann mit

$$R_{b}^{*} \cong R_{b} + \frac{H^{2}}{3 \cdot R_{a} \cdot \dot{m}^{2} \cdot c p_{sole}^{2}}$$
GI.
10.25

falls

* *

$$\frac{H}{\dot{m} \cdot cp_{sole} \cdot \sqrt{R_a \cdot R_b}} \le 1.5$$
GI.
10.26

wobei der Fehler für R_b^* in diesem Bereich maximal 5.6 % beträgt. Dies bedeutet, dass in der Regel selbst für tiefe Erdwärmesonden in erster Näherung mit der Erdwärmesondengleichung GI. 3.37 gearbeitet werden kann! Der Fehler für R_b^* , der dabei gemacht wird, ist in Abb. 10.12 dargestellt.

Abb. 10.12 Abweichung für R_b^{*} zwischen Gl. 10.24 und Gl. 10.25